
Generating high frequency trading strategies

with arti�cial neural networks and testing them

through simulation

September 24, 2010

A comparison of second order training methods for time series modelling

Nicolas Dickreuter - University of London, Goldsmiths College

(dickreuter@yahoo.com)

MSc in Cognitive Computing and Arti�cial Intelligence

Abstract

Various backpropagation algorithms are used to test whether a weak

or a semi-strong form of the e�cient market hypothesis can be rejected in

trying to predict stock market returns with neural networks. First training

algorithms such as Levengerg-Marquardt, Bayesian Regularization, BFGS

Quasi-Newton and various (scaled) conjugate gradient gradient methods

are used to train a network. In a second step the result is simulated to

see whether the neural network can outperform a simple buy-and-hold

strategy. Three examples are presented. In the �rst two, past returns of

the Dow Jones Industrial average are used to predict future returns; in the

�rst case with a 3-day and in the second case with a 1-day time horizon.

In the third example input neurons are fed �nancial data of individual

stocks, such as p/e, p/b and dividend payout ratios. The neural network

then optimizes how a constant amount of money is allocated between

stocks of the S&P100. While the di�erent training methods converge to

an optimum at di�erent speeds and to di�erent degrees, some of them

can be described as being more e�cient than others. However, in all the

examples and all the methods, a simple, passive buy-and-hold strategy

1

has not been outperformed by a neural network over the entire period.

Much more imporant than the backpropagation training method of the

neural network is the actual model speci�cation. The aim of this thesis is

much more to lay the grounds of a theoretical framework how potential

strategies need to be tested before they can be con�rmed to be working,

rather than �nding actual working strategies.

2

Contents

1 Introduction 6

2 Theoretical Framework 8

2.1 E�cient market hypothesis (EMH) - expectations based on

other research . 8

2.2 Development of trading strategies 10

2.3 Out of sample testing . 11

2.4 Procedure of the simulation 12

2.4.1 Simulation with di�erent parameters after training

of the network . 12

2.4.2 Calculation of returns 13

2.4.3 Calculation of other metrics 14

2.4.4 Necessity of statistical testing 14

2.4.5 Non parametric test 15

3 Neural networks 16

3.1 Structure and properties of neural networks 16

3.1.1 Neural networks vs. other statistical methods 16

3.1.2 Structure . 17

3.1.3 Activation function 18

3.1.4 Momentum . 18

3.1.5 Learning Rate . 19

3.1.6 Threshold function 19

3.2 Handling of time series . 19

3.3 Preprocessing of data . 20

3.3.1 Normalization . 20

3.3.2 Absolute vs. relative changes 20

3.3.3 Generalization . 21

3.3.4 Division of data . 22

3.4 Postprocessing and assessment 22

3.4.1 Performance function - mean square error 22

4 Training algorithms 23

4.1 Overview . 23

4.1.1 Presented methods 23

4.1.2 Application in Matlab 24

4.2 Gradient Descent . 25

4.3 Gradient Descent with Momentum 27

4.4 Variable Learning Rate Gradient Descent 27

3

4.5 Gauss Newton method . 28

4.6 Levenberg-Marquardt . 29

4.7 Bayesian Regularization . 30

4.8 BFGS Quasi-Newton . 31

4.9 Resilient Backpropagation (Rprop) 32

4.10 One Step Secant . 33

4.11 Conjugate Gradient Algorithms 34

4.11.1 General notes . 34

4.11.2 Scaled Conjugate Gradient 35

4.11.3 Conjugate Gradient with Powell/Beale Restarts . . . 35

4.11.4 Fletcher-Powell Conjugate Gradient 36

4.11.5 Polak-Ribiére Conjugate Gradient 36

5 Implemented Matlab Classes 36

5.1 Neural network . 36

5.2 Simulator . 37

6 Empirical results of neural network strategies 39

6.1 Overview . 39

6.2 Expected sum of returns of the next 3 days 39

6.2.1 Setup . 39

6.2.2 Results . 40

6.2.3 Statistical signi�cance of out of sample test 41

6.3 10 past days as input predicting next day 41

6.3.1 Setup . 41

6.3.2 Results . 42

6.4 High frequency trading example: multiple �nancial factors

as input neurons . 42

6.4.1 Setup . 42

6.4.2 Results . 43

6.4.3 Statistical signi�cance of out of sample test 43

7 Conclusion 44

7.1 Summary of results . 44

7.2 Suggested future research 44

A Figures for strategy 1: 3-day forecast based on past prices 46

B Figures for Strategy 2: 1 day price forecast based on past

prices 55

C Figures for Strategy 3: forecast based on �nancial factors 63

4

D Program Listings 70

D.1 Neural Network . 70

D.1.1 Neural Network Main program (training) [training.m] 70

D.1.2 Neuron Class [Neuron.m] 72

D.1.3 Neuron Class [NeuronNewton.m] 76

D.1.4 Forward Propagation Function [NeuronCalc.m] . . . 77

D.1.5 Sigmoid function [sigmoid.m] 78

D.1.6 Neural Network Training with Toolbox [train_matlab1.m] 78

D.1.7 Neural Network Training with Toolbox [train_matlab3.m] 80

D.2 Trading Simulator . 82

D.2.1 Main program [main.m] 82

D.2.2 TimeSeries Class [Time_series.m] 85

D.2.3 Trade Generator Class [TradeGenerator.m] 88

D.2.4 Trade Analyzer Class [TradeAnalyzer.m] 91

D.2.5 Trade Graph generator Class [TradeGraphs.m] . . . 96

D.2.6 Trade Class [Trade.m] 103

D.2.7 Fund Class [FundReturn.m] 104

D.2.8 Strategy Class [STRATEGY_NeuralNetwork1.m] . 108

D.2.9 Strategy Class [STRATEGY_NeuralNetwork2.m] . 109

D.2.10 Strategy Class [STRATEGY_NeuralNetwork3.m] . 111

E Figures, Tables and Bibliography 114

5

1 Introduction

When forecasting the future of markets we can broadly distinguish between two

categories: a) strategies which rely on historical data such as prices, volume of

trading or volatility and b) fundamental analysis, which is based on external in-

formation from the economic system, such as company �nancial, interest rates,

pro�tability ratios of the companies and other micro- and macroeconomic data.

The use of technical analysis is mostly frowned upon in academic circles. The

e�cient markets hypothesis (EMH) asserts that the price of an asset re�ects

all of the information that can be obtained from past prices of the asset. Any

opportunity for a pro�t will be exploited immediately and hence disappear. De-

spite the controversial reputation of technical analysis, it still �nds respectable

application among amateur traders, and professionals in the equity world often

base their trading decisions on historical prices, among other information (oth-

erwise, why would anybody look at price charts?). If there are some patterns

which lead indeed to an outperformance, they should be detectable with the

help of neural networks. It is the goal of this thesis to describe how such a

trading strategy would have to be developed and tested for validity.

The �rst part (Chapter 2) describes the theoretical �nancial framework

which is used as a basis to forecast prices with the help of neural networks.

In Chapter 3 general properties of neural networks are described and in Chap-

ter 4 the di�erent training algorithms which are used in the analysis are de-

scribed, and how generally neural networks and the simulator are programmed

on Chapter 5.

I then show empirical results in Chapter 6 how the neural networks can be

used to test the strong form of the e�cient market hypothesis in trying to make

predictions of the Dow Jones Industrial when only taking price as an input

and empirically test the application of neural networks to trading strategies.

Two such examples are presented. In a third example the input neurons are no

longer past prices, but rather �nancial factors of individual stocks. The neural

network should then decide how a �xed amount of money should be allocated

among stocks of the S&P100.

First a network is trained to recognize buying and selling signals. This is

done with a variety of di�erent training algorithms that are described in more

detail. The trained neural network is then implemented into a simulator which

calculates trading results with various parameters in the threshold function,

which activates buying and selling signals. The calculated optimal parameters

6

which are extracted through numerical approximation are then used as a trading

strategy. In order to claim that a trading strategy is potentially working in a

real-life environment, it needs to be tested for statistical signi�cance in an out-

of-sample test.

Finally the conclusion (Chapter 7) ends the thesis with a summary of the

�ndings.

7

2 Theoretical Framework

2.1 E�cient market hypothesis (EMH) - expectations based

on other research

The E�cient market hypothesis assumes that �nancial markets are information-

ally e�cient and that excess market return cannot be generated consistently

through any strategy.

There are three forms of the EMH: The weak, the semi-strong and the strong

form. In the weak form, future prices can't be predicted simply by analyzing

past prices and no excess returns can be achieved in the long run using historical

price data only. In other words technical analysis won't be able to produce

abnormal returns when the weak form of the EMH is assumed to be holding

but other forms such as insider trading and fundamental analysis may still be

applied successfully.

The semi-strong form of the EMH implies that all publicly available informa-

tion, meaning not just historical prices but also company or securities speci�c

information is included in the current price, making it impossible to outperform

the market not just by technical analysis, but also by fundamental analysis.

Whenever a new piece of information about a security or any of its underlyings

becomes available, this would be incorporated into the price instantly.

To test for strong-form e�ciency, a market needs to exist where investors

cannot consistently earn excess returns over a long period of time. Even if some

money managers are consistently observed to beat the market, no refutation

even of strong-form e�ciency follows: with hundreds of thousands of fund man-

agers worldwide, even a normal distribution of returns (as e�ciency predicts)

should be expected to produce a few dozen "star" performers.

Various research papers have disputed the e�cient-market hypothesis, both

on empirical and theoretical basis. For example �Behavioral economists� claim

that factors such as overcon�dence, overreaction, representative bias, informa-

tion bias, and various other predictable human errors can cause distortions

which could potentially be exploited from investors recognizing them. Empiri-

cal evidence has been mixed, but has generally not supported strong forms of

the e�cient-market hypothesis. (Nicholson [Jan/Feb 1968], Basu [1977], Rosen-

berg B [1985], Fama E [1992], Michaely R [1993])

Other papers have shown that P/E ratios can have in�uence on stock re-

turns N. and A. [1992] and other company speci�c (or �fundamental� factors)

8

have been identi�ed to have potentially predictive power on stock returns. While

only a fraction of academic research in the �eld has been able to produce abnor-

mal return in empirical application, any such market ine�ciency would auto-

matically vanish once the volume of the pro�t generating trades is high enough.

That's why it is very likely that if any neural network could �nd a successful

strategy from the past, it may potentially only last for a short period of time

because market participants quickly exploit it.

In this thesis I aim to show how a weak and semi-strong form of the EMH

could be rejected or accepted with the help of neural networks. In the �rst case

I only use past prices of the Dow Jones Industrial as input neurons. If the neural

network would �nd any strategy which could outperform the market, the weak

form of the EMH would be rejected. Given the large amount of research which

does have con�rmed the weak form of EMH, this would be unexpected when

based purely on plain vanilla equity instruments.

When taking fundamental factors (company speci�c �nancial information)

into account the neural networks are set up to reject or accept the semi-strong

EMH. As in this analysis only a fraction of the available information about

the companies' �nancials are used in the model, it won't be possible to draw

any de�nitive conclusions from the results. Moreover, the forthcoming analy-

ses should give a framework under which potential market ine�ciencies can be

tested for possible exploitation. Research in this domain is mixed and opinions

are polarized very strongly. Advocates of an ine�cient market often point to

start fund managers and skeptics often try to highlight the fact that ex-post

academic analyses are often �awed and biased. When looking at the perfor-

mance of professionally managed funds, where many of them take fundamental

factors into consideration, it is in my view very unlikely that a semi-strong form

of the EMH can be rejected. The reason behind this is based on two factors:

1. Market complexity is generally underestimated. To be able to predict the

outcome of a stock price based on a small number of factors is intuitively

impossible when assuming the following: When hitting a billiard ball on a

table and trying to predict the second or third bounce is relatively simple in

reality and can be replicated in a laboratory. However, the ninth bounce,

an equation that includes every single person around is needed, because

the gravitational pull of a man will impact the trajectory. The equation

will get signi�cantly more complex. To predict the 53rd bounce of the

billiard ball on the table every single elementary particle in the universe

9

needs to be part of the equation. There is no question that to predict

the future price of a stock is more complicated that predicting the 53rd

bounce of a billiard ball (Taleb [2007]).

2. Large, unpredictable (exceptional) events (black swans) have a signi�cant

in�uence on returns. �Based on data for the Dow Jones Industrial Average

over the last 107 years, is unequivocal: outliers have a massive impact on

long-term performance. Missing the best 10 days resulted in portfolios

65% less valuable than a passive investment, whereas avoiding the worst

10 days resulted in portfolios 206% more valuable than a passive invest-

ment.�Estrada [2009]. It appears that the outliers are the decisive events

rather than the small �uctuations. Those outliers are per de�nition un-

expected and would not be predicted by any related variables, even when

statistical signi�cance is given. That's why any investment approach based

on a neural network (or probably worse: based on normal distribution and

linear regression) would most likely fail in the long run.

Nevertheless, it is possible that a neural network may spot some market ine�-

ciencies that could reject the weak form of the EMH for a short period of time.

It would be virtually impossible to transform this into a pro�t in a real-world

environment, but I'd like to outline the theoretical framework that could be

applied to identify such ine�ciencies and then test them on statistical signi�-

cance. While passing the tests would still be no guarantee of potential success

in a real environment, failing them would have to lead to an exclusion of the

active strategy.

2.2 Development of trading strategies

In order to test whether the neural network can generate a trading strategy, we

need to give some framework under which the strategy is developed. Since the

neural network can only act within its own model speci�cations, it helps when

some economic intuition is behind the data that is fed to the input neurons.

As outlined above, historical prices are only one factor that is potentially of

value. Intuitively (although not necessarily so in reality) additional factors

should improve the performance of the neural network.

In this paper the following strategies are being testes:

1. Buying and selling signal given through a 3-day forward looking neural

network, taking into consideration the returns that will be earned over

10

the next 3 days as output neuron, and the last 5 days as input neurons.

This strategy is based on the Dow Jones Industrial Index.

2. Buying and selling signal given through a 1-day forward looking neural

network, considering the next day's return as output neuron and the last 10

days as input neurons. This strategy is based on the Dow Jones Industrial

Index.

3. Buying and selling signal given through a network which takes 3 �nancial

factors of di�erent companies into consideration. The output neuron is

connected to the next day's return of the respective stocks. This strategy

is based on individual stocks of the S&P100.

2.3 Out of sample testing

Once the network has been trained with a subset of the dataset, the neural

network needs to be tested with an out-of-sample application. It is generally

agreed that for forecasting methods out-of sample tests rather than goodness of

�t to past data (in-sample tests) should be used. The performance of a model on

data outside of that used in its construction and training remains the ultimate

touchstone which determines its validity. There are two arguments as shown

by[Tashman, 2001]:

For a given forecasting model, in-sample errors are likely to understate fore-

casting errors. Estimation and method selection are designed to calibrate a

forecasting procedure. This leads to the problem that in many cases the small

nuances of past history are not repeated in the future and other occurrences

which may occur in the future may not be part of the training sample. Needless

to say, this can have a strong impact on the performance of the model.

In addition common extrapolative forecasting methods, such as exponential

smoothing or also neural networks, are based on updating procedures, in which

one makes each forecast as if one were standing in the immediately prior period.

For updating methods, the traditional measurement of goodness-of-�t is based

on one step-ahead errors - errors made in estimating the next time period from

the current time period. Real time assessment has practical limitations for fore-

casting practitioners, since a long wait may be necessary before a reliable picture

of a forecasting track record will materialize. As a result, tests based on holdout

samples have become commonplace. If the forecaster withholds all data about

events occurring after the end of the �t period, the forecast-accuracy evaluation

11

is structurally identical to the real-world-forecasting environment, in which we

stand in the present and forecast the future. However, taking already into con-

sideration the held-out data while selecting the forecasting method pollutes the

evaluation environment.

2.4 Procedure of the simulation

2.4.1 Simulation with di�erent parameters after training of the net-

work

Once the neural network has been trained, its e�ectiveness needs to be tested

with a trading simulation. It is not enough to just look at the mean square

error of the trained neural network but an actual simulation is imperative. In

our case the testing is done with a custom built simulator in Matlab where

di�erent strategies can be easily de�ned in rewriting the respective class.

While the total trading performance is the most important factor to look at,

it is crucial to see it in the context with what the strategy actually does, such

as the amount of total trades, % of winning trades and % of days long. As a

benchmark we always take a simple buy-and-hold strategy (passive investment

strategy) which can always be achieved at much lower cost as there is only

minimal infrastructure necessary. In the active strategy the model assumes a

2% risk free rate, meaning that when the index (or security) is sold, a 2% p.a.

return can be achieved.

12

Figure 2.1: Procedure of simulation

There are 3 steps in the actual simulation:

1. The simulation takes the trained neural network and varies the di�erent

threshold parameters for the buying and selling decision individually (see

Fig. 3.3 on page 19 for examples of threshold functions).

2. An optimal strategy will evolve. In Fig 2.1 we can see at the bottom left

how the total annual return of the strategy will peek for some parame-

ters. This strategy will need to be further investigated as it is the most

promising one.

3. The optimal strategy is tested for statistical signi�cant outperformance

versus a buy-and-hold strategy in an out of sample test.

2.4.2 Calculation of returns

There are two ways to calculate the return between t and t+1. For the purposes

to calculate cumulative abnormal return, the compounded return (i.e. logarith-

mic) presents the distinctive advantage that di�erent time periods of return can

be added up in order to calculate the return of a cumulative period. Unless

stated otherwise I use for all calculations in this paper compounded returns:

13

R := LN

(
St
St+x

)
= LN(St)− LN(Xt+x)

St is the stock price (or index price) at day t. With the given calculation each

strategy is compared with a buy-and-hold approach of the same securities and

a number of di�erent metrics are calculated as outlined below. Returns are

calculated in the TimeSeries class right after the excel �les are loaded.

2.4.3 Calculation of other metrics

� The total performance of a given trading strategy is calculated in summing

up the individual logarithmic returns of the generated trades, such as

Rs = (
∑n
i=1Ri)+R

f
x where Ri depicts the return of each individual trades

from 1 . . . n and Rfxthe risk free return of the period where no trade was

open.

� The total strategy performance p.a. is the annualized version of the above:

Rsp = Rs

totaldays · 365

� The total risk free return Rf for period xis calculated as Rfx = Rf · x
where x constitutes the amount of idle days where no trade is open.

� The number of idle days is calculated as TSn −
∑
T di where TSnis the

total amount of returns of the time series and T di the duration of trade i.

� The buy-and-hold performance is simply calculated in summing up all the

individual returns of the time series or Rb =
Log(TSstop)
Log(TSstart)

� The buy-and-hold performance p.a. is calculated as Rbp = Rb

totaldays · 365

� The out-performance p.a. Rop is calculated as Rop = Rsp −Rpb

The calculations above are taking place in the Trade Analyzer class and is listed

in Chapter D.2.4 on page 91.

2.4.4 Necessity of statistical testing

In order to determine whether the neural network's generated trading perfor-

mance is better than a random strategy, we need to test the result for statistical

signi�cance.

Hypothesis testing is de�ned by the following general procedure:

14

1. State the relevant null hypothesis. In our case this is µr = µnwhere as

µris the result of a random investment strategy and the µnthe average

return of the strategy developed by the neural network.

2. Statistical assumptions need to be tested. For our purposes what matters

is whether returns are normally distributed. �The normal distribution is

a poor �t to the daily percentage returns of the S&P 500. The log-normal

distribution is a poor �t to single period continuously compounded returns

for the S&P 500, which means that future prices are not log-normally

distributed. However, sums of continuously compounded returns are much

more normal in their distribution, as would be expected based on the

central limit theorem. The t-distribution with location/scale parameters

is shown to be an excellent �t to the daily percentage returns of the S&P

500 Index.� Egan [2007]

3. Decision of which statistical test is applied: Due to the inconclusive results

I use a non-parametric test which is much more lax in terms of statistical

assumptions: The Wilcoxon signed-rank test can be used as alternative to

t-tests when the sample cannot be assumed to be normally distributed.

4. Next the values need to be computed.

5. Decision whether the null hypothesis can be rejected and the returns are

statistically signi�cantly di�erent to 0. Alternatively the null hypothe-

sis cannot be rejected and the Neural network does not outperform the

random strategy

2.4.5 Non parametric test

The Wilcoxon signed-rank test is a statistical hypothesis test for the case of two

related samples or repeated measurements on a single sample. It can be used

as an alternative to the paired Student's t-test when the population cannot be

assumed to be normally distributed. Similar to the paired or related sample

t-test, the Wilcoxon test involves comparisons of di�erences between measure-

ments. The advantage is that it doesn't require assumptions about the form of

the distribution.

The Wilcoxon test transforming each instance of XA −XB into its absolute

value, and removes all the positive and negative signs. In most applications of

the Wilcoxon procedure, the cases in which there is zero di�erence between XA

15

and XB are at this point eliminated from consideration, since they provide no

useful information, and the remaining absolute di�erences are then ranked from

lowest to highest, with tied ranks included where appropriate.

Suppose we collect 2n observations, two observations of each of the n sub-

jects. Let i denote the particular subject that is being referred to and the �rst

observation measured on subject i be denoted by xi and second observation be

yi. For each i in the observations, xi and yi should be paired together. The

null hypothesis tested is H0 : θ = 0. The Wilcoxon signed rank statistic W+ is

computed by ordering the absolute values |Z1| . . . , |Zn| the rank of each ordered

Zi is given a rank of Ri. Denote the positive Zi values with ϕi = I(Zi > 0)

where I(.) is an indicator function. The Wilcoxon signed ranked statistic W+

is de�ned as

W+ =

n∑
i=1

φiRi

Tied scores are assigned a mean rank. The sums for the ranks of scores

with positive and negative deviations from the central point are then calculated

separately. A value S is de�ned as the smaller of these two rank sums. S is

then compared to a table of all possible distributions of ranks to calculate p,

the statistical probability of attainingS from a population of scores that is sym-

metrically distributed around the central point. The test statistic is analyzed

using a table of critical values. If the test statistic is less than or equal to the

critical value based on the number of observations n, then the null hypothesis

is rejected in favor of the alternative hypothesis. Otherwise, the null cannot be

rejected. Lowry [2010],Wikipedia [2010]

3 Neural networks

3.1 Structure and properties of neural networks

3.1.1 Neural networks vs. other statistical methods

Neural networks have a similar approach to other statistical methods used for

data modeling1. In all cases it is the goal to limit the number of assumptions

and to use the method to optimize a procedure to �nd the best parameters

to reproduce the results. As described in Carverhill and Cheuk [2003] already

countless research has been made in the �nancial industry where neural networks

1See Riplay [1996] for a general discussion of Neural Networks and its relation to non-
parametric estimation methods

16

have been used to forecast option prices (as substitute method for Black-scholes)

or Kwon et al. [2010] used a neural network in an attempt to forecast stock prices.

While it may be possible that neural networks can indeed predict prices more

accurately than other models, research which is actually testing the success of

the neural network in a statistically rigorous manner is very rare.

3.1.2 Structure

The neural networks in this thesis are build on three layers. An input layer,

one hidden layer and one output layer. It would be possible to use additional

hidden layers as shown in Fig. 3.1, but for simplicity only one hidden layer has

been used here. The amount of input neurons varies for the examples, but is

generally between 3 and 5. Hidden neurons are between 5 and 10 and in all

cases there is one output neuron which is used to predict the time series (i.e.

the returns).

Figure 3.1: Neural network structure with multiple layers as described in Mark
Hudson Beale [2010]

The input vector elements enter the network through the weight matrix W.

w =

w1,1 w1,2 w1,r

w2,1 w2,2 w2,r

...
...

...

ws,1 ws,2 ws,r

The row indices on the elements of matrixW indicate the destination neuron

of the weight, and the column indices indicate which source is the input for that

17

weight. Before training of the network can start the weights will need to be

initialized with random values.

3.1.3 Activation function

Hidden layers are using the sigmoid activation function which is de�ned as

P (x) = 1
1+e−xHaykin [2009]. Experiments have also been made with the TanH

function, but no signi�cant di�erence could be found in the results. The com-

parison of the two functions is shown in Fig. 3.2. The output neuron is using

a linear activation function which is sometimes activating the signal through a

threshold as is further explained in Chapter 3.1.6.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Sigmoid function

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) TANH function

Figure 3.2: Activation functions

3.1.4 Momentum

Momentum is used to stabilize the weight change by making nonradical revi-

sions using a combination of the gradient decreasing term with a fraction of

the previous weight change: This gives the system a certain amount of inertia

since the weight vector will tend to continue moving in the same direction un-

less opposed by the gradient term. The momentum smooths the weight changes

and suppresses cross-stitching, that is cancels side-to-side-oscillations across the

error valley. When all weight changes are all in the same direction the momen-

tum ampli�es the learning rate causing a faster convergence. Momentum also

enables to escape from small local minima on the error surface. We can de�ne

momentum as follows:

wij = w′ij + (1−M) · LR · ej ·Xj +M · (w′ij − w′′ij)

18

The results of the neural network (in this case the gradient descent back-

propagation method) has not been strongly in�uenced on whether momentum

has been applied or not. This is mainly a dependent on the form of the error

surface as described above. An example of where momentum would have an

e�ect is shown in the error surface of Fig. 4.2 on page 27.

3.1.5 Learning Rate

In the program a learning rate of η = 0.1 has been found to be a good measure

to start. Depending on the backpropagation method the learning rate performs

di�erent functions. The variable learning rate method experiments with a non-

constant learning rate.

3.1.6 Threshold function

θ denotes the threshold. In the simulation the optimal threhold is found out

through experimentation. When the output neuron passes a threshold, a buying

or selling action is performed.

(a) Binary activation function

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Example of binary activation function

Figure 3.3: Threshold functions

3.2 Handling of time series

In order for the program to be able to handle the time series, a variety of addi-

tional enhancements need to be implemented: In the gradient descent method

each datasets leads to an adjustment of the weights. The time series then moves

one step forward and the input neurons are adjusted accordingly. Input neu-

19

rons are normally the 5 datapoints preceding the one that is predicted by the

output neuron, however the program allows to have the interval between those

input neurons to be increased through the interval variable. At the end of the

epoque the weights of the neural network need to be saved so that training can

continue with another epoque to further adjust the weights. In the program

this is achieved as follows: when the variable skipinit = 1 the weights are no

longer reset and randomized at the beginning of the training, but previously

calculated weights remain in the memory.

Figure 3.4: Time series handling

3.3 Preprocessing of data

3.3.1 Normalization

Neural networks can be made more e�cient when certain preprocessing steps

are taken. Normalizing errors when population parameters are known is simply

done as follows: X ′ = X−µ
σ . When training the network, normalization has

shown to be imperative, especially when past daily returns are used. Since they

are usually very small numbers, a large number of trainings would need to be

used to make sure the neural network output has exactly the same mean as the

original time series itself. If this is not the case the bipolar threshold function

is no longer symmetrical and buying and selling conditions are messed up.

Without normalization if the input is very large, the weights would have to

be very small to prevent the transfer function to be saturated. That's why it is

standard practice to normalize the time series before it is applied to the neural

network. This needs to be done both to the input vectors and to the target

vectors.

3.3.2 Absolute vs. relative changes

While it would theoretically be possible to feed market prices directly into the

neural network, it is very likely that better results can be achieved when relative

20

changes to previous periods (i.e. log returns as described in 2.4.2 on page 13) are

used, especially as the returns are more likely to approach a normal distribution

than the prices themselves.

0 0.5 1 1.5 2 2.5 3

x 10
4

10
1

10
2

10
3

10
4

10
5

(a) Dow Jones Industrial Average 1929-2008:
Absolute values in log scale

0 0.5 1 1.5 2 2.5 3

x 10
4

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b) Dow Jones Industrial Average 1929-2008:
daily log returns

Figure 3.5: Absolute values vs. relative returns

For the purpose of exploiting the strong form of the EMH (for further details

see Chapter 2.1 on page 8) it makes sense to use a normalized form of logarithmic

returns as we want to extract buying and selling signals. For that we need to

know what happens to the returns R in the period t + x. An example of the

results from a trained network see A.14 on page 52.

3.3.3 Generalization

A well trained network should be able to give good answers even with inputs

that have not been seen during the training. The more similar the new input is

to the ones that have been used during training, the better are the answers. To

improve generalization there are two features that can be used:

1. Early stopping: It is important that the network is not overtrained, as

this will lead to much worse results when being applied with untrained

input data. In Matlab early stopping can be automatically handled in

monitoring the error of the validation set while training on the train-

ing set. Training is then stopped when the validation increases over

net.trainParam.max_fail iterations (maximum number of validation In-

creases).

21

2. Regularization: Regularization can be done by using the Bayesian regular-

ization training function. Any data in the valuation set should be moved

to the training set.

3.3.4 Division of data

When training multilayer networks, the general practice is to �rst divide the

data into three subsets. The �rst subset is the training set, which is used for

computing the gradient and updating the network weights and biases. The

second subset is the validation set where the error on the validation set is mon-

itored during the training process. The validation error should decrease during

the initial phase of training, as does the training set error. However, when the

network begins to over�t the data, the error on the validation set begins to

rise. The test set error (which constitutes the third type of dataset) is not used

during training. If the error on the test set reaches a minimum at a signi�cantly

di�erent iteration number than the validation set error, this might indicate a

poor division of the data set. The division can be done in blocks, randomly,

using interleaved sections or by data index. (Mark Hudson Beale [2010])

3.4 Postprocessing and assessment

3.4.1 Performance function - mean square error

A good initial assessment for the neural network is the mean square error (MSE)

which gives us indication how the di�erent training epoques improved its per-

formance. It is de�ned as follows:

MSE =
1

N

n∑
i=1

(ti − ai)2

While it is generally desirable to reduce the MSE as much as possible, over-

�tting may quickly become a problem when the network is trained too much.

An enhancement to the above function gives us the the Bayesian Regularization

approach involves modifying the usually used objective function. As shown in

Chi Dung Doan [2009] the modi�cation can enhance the model's generalization

capability in expanding the term. Ew which is the sum of the square of the

network weights.

Matlab o�ers a variety of tools to further test the validity of the network. The

foundations for this are already laid in the steps where the data is preprocessed

22

and the data is split into training, validation and testing set for each epoch for

each of the training sets and continues progress of the neural network should

be observable. Ideally the validation and test MSE should develop in a similar

manner. If the test curve had increased signi�cantly before the validation curve

increased, then it would be an indication that over�tting had occurred. An

example is shown in Fig. A.5 on page 48 where a repetitive pattern is used as

input to BFGS quasi newton method. In Fig. A.14 on page 52 we can see the

di�erence of the results when various training methods are used.

4 Training algorithms

4.1 Overview

4.1.1 Presented methods

While some of the training algorithms were programmed from scratch, I have

taken the liberty to use some of the integrated Matlab functions, as they o�er

much greater e�ciency and speed and also �exibility. The following methods

have been used for testing:

Function Algorithm

trainlm Levenberg-Marquardt
trainbr Bayesian Regularization
trainbfg BFGS Quasi-Newton
trainrp Resilient Backpropagation
trainscg Scaled Conjugate Gradient
traincgb Conjugate Gradient with Powell/Beale Restarts
traincgf Fletcher-Powell Conjugate Gradient
traincgp Polak-Ribiére Conjugate Gradient
trainoss One Step Secant
traingdx Variable Learning Rate Gradient Descent
traingdm Gradient Descent with Momentum
traingd Gradient Descent

Table 1: Training algorithms used for testing

Each of the training algorithms have their advantages and disadvantages.

While for the overall performance of the trading simulator the actual training

algorithm may only have an insigni�cant e�ect, as other factors, such as quality

of data and correctness of the model speci�cation (i. e. picking the relevant

23

data) is much more important. Nevertheless, for completeness's sake I analyze

the performance of the di�erent algorithms and give a short assessment on what

their e�ects are when used with returns on the Dow Jones Industrial Average.

It is complex and and time consuming to compute the Hessian matrix for

feedforward neural networks. Algorithms that are based on Newton's method,

do not require calculation of second derivatives. These are called quasi-Newton

(or secant) methods. They update an approximate Hessian matrix at each

iteration of the algorithm. The update is computed as a function of the gradient.

The quasi-Newton method that has been most successful in published studies is

the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm

is implemented in the trainbfg routine.Mark Hudson Beale [2010]

The training algorithms all aim to reduce the error produced by the neural

network in �nding a way to strive to the ideally global minimum of the n-

dimensional error surface.

Figure 4.1: Gradients of a vector �eld

4.1.2 Application in Matlab

At �rst network and weights need to be initialized and then the network can

be trained. The network can be trained for function approximation (nonlinear

regression), pattern association, or pattern classi�cation. A set of examples with

network input p and target t is required.

For batch gradient descent the traingd function is used. The weights will be

updated in the direction of the negative gradient.

There are seven training parameters associated with traingd :

� epochs: number of epochs

� show: The training status is displayed for every show iterations of the

24

algorithm

� goal: The training stops if the number of iterations exceeds epochs, if the

performance function drops below goal

� time: Training stops after a certain amount of time

� min_grad: Training stops if gradient falls below min_grad

� max_fail: If training is lager than maxfail

� lr: The learning rate lr is multiplied times the negative of the gradient to

determine the changes to the weights

The network is trained on the training data until its performance begins to

decrease on the validation data, which signals that generalization has peaked.

The test data provides a completely independent test of network generalization

(Mark Hudson Beale [2010]).

4.2 Gradient Descent

Weights and biases are updated in the direction of the negative gradient of the

performance function which is the direction where the performance function

decreases the most.

Gradient descent iteratively updates w replacing wt by wt+1 using the fol-

lowing update equation where η is a learning rate that typically declines with

t. wt+1 = wt − η∇L. Note that here we are minimizing L so we want to move

in the opposite direction from the gradient.

wt+1 = wt − ηtw
∂L
∂wj

(Mark Hudson Beale [2010] use the notation as follows: xk+1 = xk − αkgk

where xk is a vector of the current weights and gk is the current gradient and

αk is the learning rate.)

Through one-dimensional optimization wj is adjusted while holding the other

weights �xed. We do this for each j and because the weights have changed, we

may need to repeat the process until all weights are simultaneously at optimal

values.

For a normal multilayer perceptron with incremental method the following

method has been applied in the computer program:

25

1. A training sample if presented to the neural network which is normalized.

X ′i =
[
xiµi

σi

]
2. The z-score normalization uses the mean and the standard deviation for

each feature across a set of training data.This produces data where each

feature has a zero mean and a unit variance.Priddy [2005]. For our given

purposes this appears to be the method of normalization which makes the

most sense.

3. The desired output is compared to the actual output after forward prop-

agation.

4. β is calculated for each node The beta for the TanH equals β = q ·y ·(1−y),
where q is the weighted sum of the betas of the following layer, where the

respective network is connected to. The weights are given by the weights

of the connection themselves. y denotes the output signal.

5. The weights of each connection are adjusted with the delta, which is cal-

culated as follows: 4 = βi · η · yxy(in the program listing this is neu-

ron(id).beta * learningRate * neuron(neuron(id).connections(n)).outputsignal)

6. The previous steps are repeated until the mean square error is no longer

decreasing. This prevents over�tting.

Minimization by gradient descent is based on the linear approximation E(w +

y) ≈ E(w) + E′(w)T y, which is the main reason why the algorithm is often

inferior to other methods. In addition the algorithm uses constant step size,

which in many cases are ine�cient.

A simple form of gradient descent su�ers from serious convergence problems.

Ideally we should be able to take steps as large as possible down to the gradient

where it is small (small slope) and and take smaller steps when the gradient

is large, so that we don't jump of of the minimum. With the update rule of

the gradient descent we do right the opposite of that. In addition to that the

curvature of the error surface may not be the same in all directions. A long and

narrow valley for example the motion could be more along the wall (bouncing

from one wall to the other) even though we want to move as fast as possible

out of the valley without bouncing the walls. This can be improved with not

only using gradient information but also the curvature (i.e. second derivatives).

(Ranganathan [2004])

26

(a) Error function with local minima as de-
scribed in Rojas [1996]

(b) Gradient descent method
(green) vs. conjugate gradient
illustration (red) as shown in
Alexandrov [2010]

Figure 4.2: Moving on the error surface: method comparison

4.3 Gradient Descent with Momentum

In adding momentum to the gradient descent method, the network can also

respond to recent trends in the error surface. In that sense momentum can

ignore small features on the error surface and act like a lowpass �lter. It will

help to avoid that the network gets stuck in a shallow local minimum that could

be slid through with momentum. (Mark Hudson Beale [2010]).

Including a momentum term in the algorithm is a way to force the algo-

rithm to use second order information from the network. Unfortunately the

momentum term is not able to speed up the algorithm considerable, and may

cause the algorithm to be even less robust, because of the inclusion of another

user dependent parameter, the momentum constant (Møller [1990]). This is in

accordance with the observations made in this paper as is visible in Fig. A.12

compared to Fig.A.13.

4.4 Variable Learning Rate Gradient Descent

This method uses a variable learning rate η that is adjusted depending on how

the performance of the network evolves during training. η is decreased whenever

27

performance has increased while if performance deteriorates η is increased. As

calculation normal gradient descent backpropagation is used as described in

Chapter 4.2 is used.

4.5 Gauss Newton method

The Gauss�Newton algorithm is a method used to solve non-linear least squares

problems. It can be seen as a modi�cation of Newton's method for �nding a

minimum of a function. Unlike Newton's method, the Gauss�Newton algorithm

can only be used to minimize a sum of squared function values, but it has

the advantage that second derivatives, which can be challenging to compute,

are not required. The Gauss�Newton algorithm will be derived from Newton's

method for function optimization via an approximation. As a consequence,

the rate of convergence of the Gauss�Newton algorithm is at most quadratic.

The recurrence relation for Newton's method for minimizing a function S of

parameters, β is βs+1 = βs − H−1g where g denotes the gradient vector of

S and H the hessian matrix of S. Elements of the Hessian are calculated by

di�erentiating the gradient gj = 2
∑m
i=1

(
ri

ari
aβi

)
with respect to Bk Hjk =

2
∑m
i=1

(
ari
aβj

ari
aβk

+ ri
a2ri

aβiaβk

)
.

In order to apply the hessian matrix to the neural network the following

methodology has been applied in the computer program

1. Through normal forward propagation the values of each nodes are calcu-

lated.

2. βj is calculated for each node. For the output nodes βj always takes the

value 1. For the inner nodes it will take the value of βj = qi ·(1−y2) where
qi is again the weighted sum of the following betas (assuming there might

be more than one output node) weighted by the connection's weight.

3. Two vectors are calculated for each dataset whereas each value depicts

one weight of the network Jn = βjn · yn and Gnβn · yn. J in this case is

recalculated for each dataset, while G is cumulatively added and averaged

at the end of the dataset.

4. The Hessian Matrix is calculated for each dataset so that H = J ′ · J and

is summed up with each dataset (as in Matlab the vector is a column, the

multiplication needs to be J ′ · J and not vice versa).

28

5. The hessian matrix is summed up and averaged at the end of the batch.

To avoid a singular matrix a small value is added to the diagonal of the

Hessian after which the deltas can be calculated.

6. At the end of each epoque the delta is calculated in multiplying the G with

the inverse hessian. (In Matlab this can be accelerated with d = g/H)

4.6 Levenberg-Marquardt

As described in Mark Hudson Beale [2010], similar to the quasi-Newton method,

the Levenberg-Marquardt algorithm is designed to approach second-order train-

ing speed without having to compute the Hessian matrix. Levenberg-Marquardt

can be thought of as a combination of steepest descent and the Gauss-Newton

method. When the current solution is far from the correct one, the algorithm be-

haves like a gradient descent method: slow, but guaranteed to converge. When

the current solution is close to the correct solution, it becomes a Gauss-Newton

method.

The Hessian matrix is approximated as H = JTJ and the gradient g = JTe

where J is the Jacobian matrix that contains �rst derivatives of the network

errors with respect to the weights and biases and e is a vector of network errors.

In vector calculus, the Jacobian marix is the matrix of all �rst-order partial

derivatives of a vector- or scalar-valued function with respect to another vector.

In our case it contains the �rst derivatives of the network errors with respect to

the weights and biases.

J(n) =

∂e(1)
∂w1

∂e(1)
∂w2

∂e(1)
∂w3

· · · ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

∂e(2)
∂w3

· · · ∂e(2)
∂wm

∂e(3)
∂w1

∂e(3)
∂w1

∂e(3)
∂w1

· · · ∂e(3)
∂wm

...
...

...
. . .

...
∂e(n)
∂w1

∂e(n)
∂w2

∂e(n)
∂w3

· · · ∂e(n)
∂wm

w=w(n)

The importance of the Jacobian lies in the fact that it represents the best

linear approximation to a di�erentiable function near a given point. It is the

derivative of a multivariate function. For a function of n variables, n > 1, the

derivative of a numerical function must be matrix-valued, or a partial deriva-

tive.Haykin [2009]

29

Finally, the weights are updated as follows:

xk+1 = xk −
[
JTJ+ µI

]−1
JTe

.

With a µ is zero the method coincides with Newton's method using the

Hessian Matrix as approximation as shown in Chapter 4.5 and implemented

manually in Matlab as shown in Chapter D.1.3. With a large µ the method

become identical to gradient descent with a very small step size. In di�erent

positions on the error surface, one or the other method is at an advantage.

Generally it is Newton's method that is faster and more accurate near an error

minimum, which means a shifting towards that method is desired as quickly as

possible. That's why µ is increased after each successful step.

4.7 Bayesian Regularization

Bayesian regularized neural networks have the advantage that they are di�cult

to overtrain, as an evidence procedure provides an objective criterion for stop-

ping training. They are di�cult are inherently insensitive to the architecture

of the network, as long as a minimal architecture has been provided. It has

also been shown mathematically that they do not need a test set, as they can

produce the best possible model most consistent with the data (Burden and

Winkler [2009]).

In our case the network training function updates the weight and bias values

according to Levenberg-Marquardt optimization. Backpropagation is used to

calculate the Jacobian jX of performance perf with respect to the weight and bias

variables X. Each variable is adjusted according to Levenberg-Marquardt,Mark

Hudson Beale [2010].

jj = jX * jX

je = jX * E

dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix. The adaptive value mu is

increased by mu_inc until the change shown above results in a reduced perfor-

mance value.

In bayesian regularization training not only aims to minimize the sum of

squared errors but instead adds an additional term. The objective function

30

becomes

F = βEd + αEw

where Ewis the sum of squares of the network weights and Edis the sum

of the squared errors. αand β are coe�cients giving di�erent weights to the

optimization functions. There is a trade o� between reducing the errors more

emphasizing network size reduction, which will produce a smoother network

response. It minimizes a combination of squared errors and weights, and then

determines the correct combination so as to produce a network that generalizes

well.

4.8 BFGS Quasi-Newton

As described in Schoenberg [2001], Sir Isaac Newton applied calculus was the

optimization of a function. in observing that the derivative of a function being

zero gave its extremum. The problem is that �nding this extremum for non-

quadratic functions is not always easy. Newton proposed an iterative solution

in using a Taylor series approximation about some given point of the function's

surface. If the function is quadratic, we arrive at the solution in a single step.

If the function is not quadratic, we must solve it iteratively. While I don't want

to go into further detail how the actual Newton method is working exactly, it is

su�cient to understand that the inverse of the Hessian will determine the angle

of the direction and the gradient. The issue comes from the fact that a function

for computing an analytical Hessian is almost never available and that's why

methods have been developed to compute it numerically.

The BFGS Quasi Newton method is a variation of Newton's optimization

algorithm, in which an approximation of the Hessian matrix is obtained from

gradients computed at each iteration of the algorithm.

As described in Mark Hudson Beale [2010] the BFGS Quasi-Newton method's

backpropagation adjusts the weights and biases as X = X + a · dX where dX

is the search direction. The parameter a is selected to minimize the perfor-

mance along the search direction. A line search function is used to locate the

minimum point while the �rst search direction is the negative of the gradient

of performance. In succeeding iterations the search direction is computed as

dX = −H/(gX)−1 where gX is the gradient and H is a approximate Hessian

31

matrix. The Hessian matrix is de�ned as:

H(f) =

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

To compute the Hessian matrix is relatively complex and can take a lot of

resources. Quasi-Newton methods avoid the calculation in updating an approx-

imate Hessian matrix at each iteration. The update is computed as a function

of the gradient. The BFGS is the quasi-Newton method which has been most

successful.

The procedure is described in detail in Edwain K.P. Chong [2008].

Hk = Hk−1 +

(
yyT

yT s

)
− Hk−1ss

THk−1

sTHk−1s

H−1k =

(
I − syT

yT s

)
H−1k−1 −

(
I − ysT

yT s

)
+
ssT

yT s

where s = x(k) − x(k−1)

Like other methods, the BFGS method can also get stuck on a saddle-point.

In Newton's method, a saddle-point can be detected during modi�cations of

the (true) Hessian. Therefore, search around the �nal point when using quasi-

Newton methods.

4.9 Resilient Backpropagation (Rprop)

Neural networks usually use sigmoid or TanH transfer functions (activation func-

tions in the hidden layer). As a side e�ect they sometimes compress a large

input range into a limited output range. In both Sigmoid and TanH functions

the slopes approach zero when the input gets large. This causes the gradient to

have a very small magnitude and therefore weights and biases are changed only

slightly from their original value.

The resilient backpropagation tries to mitigate these side e�ects of the partial

derivatives. The principle works as follows: Only the sign of the derivative of

the error function can determine the direction of the weight update while the

magnitude of the derivative has no e�ect on the weight update. The size of the

weight change is determined by a separate update value which is decreased by

32

a constant factor whenever the derivative with respect to that weight changes

sign from the previous iteration. If the derivative is zero, the update value will

remain the same. The e�ect is a decreasing oscillation that updates the weight

as whenever an oscillation occurs, the weights change is reduce. If the weight

continues to change in the same direction for several iterations, the magnitude

of the weight change increases.

Each variable is adjusted according to the following: dX = deltaX ·sign(gX)

where the elements of deltaX are all initialized to delta0, and gX is the gradi-

ent. At each iteration the elements of deltaX are modi�ed.(Mark Hudson Beale

[2010])

As described in Riedmiller [1994], for Faster Backpropagation Learning: The

RPROP Algorithm, each weight has an individual update value 4ij which de-

termines the up.

4w(t)
ij =

 −4ij, ∂e
∂wij

> 0

+4ij , ∂e
∂wij

< 0

w
(t)
ij = w

(t)
ij +4w(t)

ij

If the partial derivative changes sign, meaning that the previous step was

too large and the minimum was missed, the previous weight-update is reverted:

4w(t)
ij = −4w(t+1)

ij ,
∂e

∂wij

(t+1)

· ∂e

∂wij

(t)

< 0

4.10 One Step Secant

The term secant methods used in is reminiscent of the fact that derivatives

are approximated by the secants through two function values although in many

dimensions the function values here the function is the gradient do not determine

uniquely the secant here the approximated Hessian.

Weights and biases are adjusted as follows in the backpropagation as de-

scribed in Mark Hudson Beale [2010]:

X = X+a∗dX where dX is the search direction. The parameter a is selected

to minimize the performance along the search direction. A line search function

is used to locate the minimum point. The �rst search direction is the negative

of the gradient of performance. In succeeding iterations the search direction is

computed from the new gradient and the previous steps and gradients, according

33

to the following formula:

dX = −gX +Ac ∗Xstep+Bc ∗ dgX; where gX is the gradient, Xstep is the

change in the weights on the previous iteration, and dgX is the change in the

gradient from the last iteration.

4.11 Conjugate Gradient Algorithms

4.11.1 General notes

As described in Mark Hudson Beale [2010]the basic backpropagation algorithm

adjusts the weights in the steepest descent direction (negative of the gradient),

the direction in which the performance function is decreasing most rapidly.

While the function decreases most rapidly along the negative of the gradient, it

does not produce the fastest convergence.

In the conjugate gradient algorithms a search is performed along conjugate

directions, which produces generally faster convergence than steepest descent

directions. In most of the algorithms the learning rate η is used to determine

the lenght of the weight update. In conjugate gradient algorithms the step

size is adjusted at each iteration. A line search determines the step size that

minimizes the performance function. Repeated line searches work well when the

following condition is satis�ed: ∂2f
∂wj∂wk

= 0. The conjugate gradient method

does line searches along the conjugate directions given by the eigenvectors of

the Hessian.Haykin [2009]

In conjugate gradient methods and quasi-Newton methods the descent path

is not determined by the steepest gradient and a line search routines have to be

applied. The search routines have to be applied several times for each individual

search, which makes the conjugate gradient methods time-consuming. As a

positive factor the methods have a convergence which is usually much quicker

as less iterations are needed. They become particularly interesting for large

scale networks.

A bisection algorithm is the simplest version of a line search but has usually

quite poor performance. The golden section search does not require calculation

of the slope either. It just starts by determining an interval, beginning at a given

point and extending the interval border in increasing steps until the minimum

of the error function is bracketed. The position of the minimum is estimated

by narrowing down the current interval. However, a combination of a golden

section search and a quadratic interpolation between the intervals is much more

e�ective. It will lead to an asymptotic convergence (Sei�ert [2006]).

34

4.11.2 Scaled Conjugate Gradient

As described in Møller [1990], who developed the algorithm, ,the scaled conju-

gate gradient method distinguishes itself form the other methods in the fact that

it chooses the search direction and step size more carefully by using information

from the second order approximation E(w+y) ≈ E(w)+E′(w)T y+ 1
2y
TE′′(w)y,

where E(w) denotes the error function in a given point (w + y) in RN.

The scaled conjugate gradient algorithm is based on conjugate directions,

but this algorithm does not perform a line search at each iteration which can

potentially safe a lot of time. The method may use more iterations than other

conjugate gradient methods, but the amount of computations can be signi�-

cantly reduced as no line search needs to be performed.

As shown in Mark Hudson Beale [2010] most of the optimization methods

used to minimize functions are based on the same strategy. The minimization is

a local iterative process in which an approximation to the function in a neigh-

borhood of the current point in weight space is minimized. The approximation

is often given by a �rst or second order Taylor expansion of the function. The

error function in minimized as follows (Møller [1990]):

1. Choose initial weight vector w1 and set k = 1

2. Determine a search direction pk and a step size αk so that E(wk+αkpk) <

E(wk)

3. Update vector: w+1 = wk + αkpk

4. If E′(wk) 6= 0 then set k = k + 1 and go to 2 else return wk + 1 as the

desired minimum

Through an iterative process the next point is determined. This takes two

steps: In the �rst one the search direction is determined. It is decided in which

direction the the search in the weight-space should be performed to �nd a new

point. In a second step it has to be determined how far in the speci�ed direction

the search needs to go. If the search direction pk is set to the negative gradient

�E′(w) and the step size αk to a constant e, then the algorithm becomes the

gradient descent algorithm as described in 4.2 on page 25.

4.11.3 Conjugate Gradient with Powell/Beale Restarts

This conjugate gradient method uses a line search to determine the minimum

point. The �rst search direction is the negative of the gradient. In succeed-

35

ing iterations the search direction is computed from the new gradient and the

previous search direction according the the following formula:

dX = −gX+ dXold · Z where gX is the gradient. Z can be computed in

di�erent ways. The Powell-Beale variation of conjugate gradient is distinguished

by two features. First, the algorithm uses a test to determine when to reset the

search direction to the negative of the gradient. Second, the search direction

is computed from the negative gradient, the previous search direction, and the

last search direction before the previous reset. (Mark Hudson Beale [2010])

For all conjugate gradient algorithms, the search direction is periodically

reset to the negative of the gradient. In the Powell/Beale restart method the

restart occurs if there is very little orthogonality left between the current gra-

dient and the previous gradient.

| gTk−1 − gk |≥ θ | gk |2

Whenever this condition is met, the search condition is reset to the negative

of the gradient.

4.11.4 Fletcher-Powell Conjugate Gradient

For the Fletcher-Reeves variation of conjugate gradient it is computed accord-

ing to Z=normnew_sqr/norm_sqr; where norm_sqr is the norm square of the

previous gradient and normnew_sqr is the norm square of the current gradient.

4.11.5 Polak-Ribiére Conjugate Gradient

For the Polak-Ribiére variation of conjugate gradient, it is computed according

to Z = ((gX - gX_old)'*gX)/norm_sqr; where norm_sqr is the norm square of

the previous gradient, and gX_old is the gradient on the previous iteration.

5 Implemented Matlab Classes

5.1 Neural network

In the simplest case we use a gradient descent method: One way to program

the backpropagation algorithm with the �exibility of adjusting the size of the

network is in creating a neuron class that handles all the functions itself and

where the initial structure is set up through properties of the class itself. Once

the Neurons have been instantiated, the addConnection method is called which

36

sets the connections between the neurons and assigns them a certain type. All

the di�erent connections have to be de�ned.

Figure 5.1: UML diagram of Neural Network training

The training can then start in looping through a procedure that �rst calls

the forward propagation. The result is then compared to the desired output

and a backpropagation method is called for all the neurons, �rst for the output

layer, then for each of the neurons in the hidden layer. Once all the β and γ are

calculated, the weights need to be updated. This is done through the weight

updating method.

For the approximate Newton method an additional class (NeutonNeuron) is

made available which inherits the Neuron class with all its functions. The full

listing is provided in Chapter D.1 on page 70.

5.2 Simulator

The trading simulator is fully object oriented and �exible to assess any trad-

ing strategy in changing di�erent parameters and making it easy to assess the

outcome through a 3-dimensional graphical depiction. It consists of a variety of

classes which an overview is given in Fig. 5.2.

37

Figure 5.2: UML diagram of trading simulator

The procedure of the simulation is as follows: At �rst a time series is loaded,

this is done in the TimeSeries class as listed in Chapter D.2.2 on page 85.

Depending on whether only one series (in the case of an index) or multiple

series when various stocks are loaded as in the third example that is presented

below. In a next step the trades are generated, based on the strategy that is

applied. This is done through the TradeGenerator class and its subclass, which

is always a prede�ned strategy. In our case, the strategy class is generating an

output value in the neural network which is then used to make a buying and

selling decision. Once all the trades are generated (which each having properties

such as buying price, selling price and return, etc), the trades need to be bundled

and analyzed. This is the purpose of the trade analyzer class: returns of all the

trades are averaged and summed up and a great variety of analysis is done. The

di�erent metrics that are calculated are described in more detail in Chapter 2.4.3

on page 14.

Once all the di�erent metrics are stored, they have to be graphically dis-

played. This is done by the TradeGraphs class (see Chapter D.2.5 on page 96

for a full listing of the class). The di�culty there lies to understandably depict

the 3d Arrays that were generated by the TradeAnalyzer class. This is best

done with 3d mesh diagrams where all the results are displayed as a function

38

of varying parameters (buying and selling thresholds). In the 3d graphs it is

relatively easy to spot the best trading strategy, which can then be analyzed in

more detail.

Finally it is always of interest for any strategy to see the actual performance

in a simulated scenario, so that the day-to-day behaviour of the hypothetical

fund can actually be observed.

6 Empirical results of neural network strategies

6.1 Overview

As outlined earlier it is questionable whether trying to make predictions based

on price only are a meaningful method of forecasting prices. But to outline a

procedure of how such a testing would have to be done I present some examples

that are simply based on past prices. In a �rst step the neural network is trained

according to a certain rule and in a second step the results are simulated and

assessed.

In total there are 3 examples: the �rst two examples are trying to make

predictions based on past prices only. The �rst one focuses on the following 3

days as a whole, assuming that it might be ine�cient to try to predict what hap-

pens the very next day. The second example focuses on the following day only.

Both of them are trading the Dow Jones Industrial index. The third example

goes beyond only looking at past prices of an index and incorporates �nancial

factors from di�erent companies to decide, which stock should be bought and

sold. The neural network then decides how a given amount of money should be

distributed among 100 di�erent stocks, depending on how the �nancial factors,

which are used as input neurons, evolve.

6.2 Expected sum of returns of the next 3 days

6.2.1 Setup

In this setup the input neurons represent the returns of the last 5 days and the

output neuron is the sum of the returns of the next 3 days. In a �rst step we

need to train the neural network with all available backpropagation algorithms,

so we can decide which was is delivering the best results. Once this is done, the

neural network is saved so we can apply it for further testing.

39

Buying and selling signals are triggered with the binary activation function

when the output neuron exceeds the parameter θband θsfor the buying and

selling thresholds. The optimal thresholds are decided through a simulation

and by trial and error. The results of the simulation are presented in Fig. A.15

on page 53.

As described in [Rojas, 1996] it is of advantage to use a bipolar network in-

stead of a binary one: �Many models of neural networks use bipolar, not binary,

vectors. In a bipolar coding the value 0 is substituted by =1. This change does

not a�ect the essential properties of the perceptrons, but changes the symmetry

of the solution regions. It is well known that the algebraic development of some

terms useful for the analysis of neural networks becomes simpler when bipolar

coding is used.�

6.2.2 Results

Sharp Ratio for Dow Jones of the given period 1.1786
Sharp Ratio for simulated Fund 1.3515

peakToTroughLogFund -23.7709
peakToTroughLogIndex -23.7709

Statistical signi�cance of di�erence p =0.1759
Outperformance p.a. 0.2062

Buy and hold performance p.a. 14.2208
Strategy performance p.a. 14.4269
Buy and hold longdays 3650
Strategy Longdays 3611

Table 2: Strategy 1 Summary

The results of the trained networks can be seen in Chapter A.14 on page 52

and the actual results of the simulation are printed in Chapter A.15 on page 53.

While the above results show that the neural network is not outperforming the

market as such, the good news is that the sharp ratio is actually higher. It

seems that the neural network is able to avoid certain periods of high volatility.

40

6.2.3 Statistical signi�cance of out of sample test

Outperformance p.a. -0.6843
Buy and hold performance p.a. -1.9609

Strategy performance p.a. -2.6451
Buy and hold longdays 3225
Strategy Longdays 3208

Table 3: Strategy 1 Summary (out of sample)

The out of sample results are shown in chapter A.16 on page 54.

6.3 10 past days as input predicting next day

6.3.1 Setup

Similar to the above example, we �rst train the network. The di�erence to

the method user in Chapter 6.2 is that we are using di�erent input and output

neurons. As input neurons we go further back: using the returns of the last 10

days as input neurons. As output neuron on the other hand, we only use the

return on of the following day.

Once the neural network has been trained with all the di�erent backprop-

agation methods, we decide which one was most successful. After that we can

apply the neural network in a testing environment and try to �nd out, at which

threshold level buying and selling signals should be triggered. They are trig-

gered with the binary activation function when the output neuron exceeds the

parameter θband θsfor the buying and selling thresholds. The results of the

simulation are presented in Fig. B.14 on page 62.

41

6.3.2 Results

Sharp Ratio for Dow Jones of the given period 1.19
Sharp Ratio for simulated Fund 1.22

peakToTroughLogFund -15.2
peakToTroughLogIndex -22.7

Statistical signi�cance of di�erence p =0.63
Outperformance p.a. 0.71

Buy and hold performance p.a. 14.3
Strategy performance p.a. 15.0
Buy and hold longdays 3650
Strategy Longdays 3388
Number of trades 93

Table 4: Strategy 2 Summary

6.4 High frequency trading example: multiple �nancial

factors as input neurons

6.4.1 Setup

This setup distinguishes itself that it is not simply relying on past prices of

the securities but it takes additional company-speci�c information into account.

In this example we no longer examine an index of securities, but we trade

the actually securities themselves. The sample consists of 100 securities of the

S&P100, for a timeframe of 1980 to 2008, subject to data availability (when one

of the factors is not yet available, the period for that stock is ignored). The

neural network determines how a given amount of money (starting with e.g.

$1000) is distributed among the 100 securities. The neural network is trained

in a way that the 3 input neurons will generate one output signal. If the output

signal increases relative to the previous day, then this is considered a buying

signal. If the output signal decreases to the previous day, it is considered a

selling signal.

When the neural network is trained, the output neuron is connected to the

next day's return of the respective security. If it is relatively high, it will end

up training the network to buy at this point and if it is low, the network will

be trained to sell.

The following factors are fed as input neurons into the neural networks:

1. Change in payout ratio over the last day: The payout ratio of a security

depicts the portion of net income of the company that is distributed as

42

a dividend to stockholders. There is no consensus on whether this factor

has in�uence on future stock price development. Nevertheless, traders

sometimes take it into consideration and base their decisions among others

on this indicator.

2. Change in p/e ratio over the last day: The p/e ratio indicates how a

stock is priced relative to it's projected or past earnings. In our case, the

p/e ratio is calculated in dividing the current stock price by last year's

earnings per share.

3. Change in p/b ratio over the last day: Similar to the p/e ratio, the p/b

ratio refers to a stock's price per book value.

4. Output signal: The output signal is trained to the price change to the

next day

The above factors can be replaced with other factors that may be more appro-

priate. To avoid distortions in the neural network it is important that they are

of the same magnitude as the output neuron (i.e. % change towards it's last

value). If absolute values are taken, they would have to be normalized.

The results of this simulation are presented in Fig. C.13 on page 69.

6.4.2 Results

Outperformance median -6.2
Buy and hold median. 10.2

Strategy median 4.0
Fund Sharpe Ratio 1.66
Index Sharpe Ratio 1.59

Table 5: Strategy 3 Summary

The result in this case shows a clear underperformance. When loking at Fig. C.13

on page 69 we can see that for many of the stocks the amount of winning trades

was less than 50%. The given con�guration is not suitable for a neural network

and the strategy clearly does not work.

6.4.3 Statistical signi�cance of out of sample test

No out of sample test has been performed in this case as the results of the

in-sample test are not satisfactory.

43

7 Conclusion

7.1 Summary of results

Similar to Malikel [1973] view of Technical analysis, it is not possible with a

simple neural network to outperform the market when the input neurons are

based on price only. In addition to that the simulations have shown that neural

networks are unable to outperform the market for an extended period of time

when input neurons are connected to p/e, p/b and payout ratios. However in

one case an increase in the sharp ratio has been observed.

The di�erent training algorithms have shown relatively large divergence in

how they manage to reduce the error. Generally, second order training methods

have been most successful while the gradient descent method is clearly not

suitable for these kind of large scale problems.

Nevertheless, it is not the backpropagation algorithm which makes a dif-

ference whether the market can be outperformed or not, it is much more the

speci�cation of the model itself (i.e. the input neurons and the de�nition of

the output neuron) that are important. If the input factors have no signi�cant

connection to the output factors, there is no use in training the network.

7.2 Suggested future research

In this thesis it was tested whether neural networks could outperform the market

over an extended period of time in using past prices and some �nancial ratios.

While there was no restriction on when the trades should be made, the used

dataset was using end of day prices. The trades were thus limited on a maximum

one one trade per day.

In future research it might make sense to loosen this restriction and allow

multiple trades per day. This would require to signi�cantly enhance the dataset:

using order book data instead of only actual last prices and use them as input

neurons might give a better understanding about the current psychology of the

market. Research in this area is relatively limited because datasets are not

readily available in information systems such as Bloomberg or Factset. It is

likely that when using this additional information and testing the success of a

trained neural network based on order book information for a relatively short

period of time, success rates could be higher than what is presented in the

context of this thesis.

In addition it would be interesting to explore di�erent asset classes. The

44

equity market is generally researched relatively well. Neural networks could

�nd better application when used in connection with derivatives or potentially

also forex products, where data is less prone to be contaminated by accounting

standards as it is the case in the equity market. In addition it would be interest-

ing to include a quanti�ed form of general news�ow. This would be especially

interesting in connection with high frequency trading and detailed information

about order books of individual securities. Since this information is not readily

available, market ine�ciencies are much more likely to surface.

45

A Figures for strategy 1: 3-day forecast based on

past prices

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.21314 at epoch 100

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
-0

.0
28

*T
ar

ge
t+

-0
.0

05
6 Training: R=-0.70084

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
-0

.0
24

*T
ar

ge
t+

-0
.0

06 Validation: R=-0.69564

Data

Fit
Y = T

-1 0 1

-1

0

1

TargetO
ut

pu
t~

=
-0

.0
26

*T
ar

ge
t+

-0
.0

06
3 Test: R=-0.73165

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

TargetO
ut

pu
t~

=
-0

.0
27

*T
ar

ge
t+

-0
.0

05
8 All: R=-0.70303

Data

Fit
Y = T

(b) Regression

Figure A.1: Gradient Descent (Trained network for DJ Industrial's returns 1990-
2000)

0 5 10 15 20 25 30 35 40 45
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.00025293 at epoch 43

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

49 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-4
.6

e-
00

5 Training: R=0.99956

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

00
86

Validation: R=0.99931

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

00
69

Test: R=0.99953

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

00
25

All: R=0.99952

Data

Fit
Y = T

(b) Regression

Figure A.2: Scaled conjugate gradient (Trained network for DJ Industrials re-
turns 1990-2000)

46

0 5 10 15 20 25 30 35 40 45
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.00017199 at epoch 40
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

46 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1
-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

00
56

*T
ar

ge
t+

1.
1 Training: R=0.043927

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

04
7

Validation: R=0.99955

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
0.

00
02

5 Test: R=0.99925

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

31
*T

ar
ge

t+
0.

8

All: R=0.24017

Data

Fit
Y = T

(b) Regression

Figure A.3: BFGS quasi Newton (Trained network for DJ Industrials returns
1990-2000)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 3.3282e-006 at epoch 5

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

5 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

09
9

Training: R=1

Data

Fit
Y = T

-1 0 1

-1

0

1

Target
O

ut
pu

t~
=

1*
T

ar
ge

t+
0.

00
1

Validation: R=1

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

1

Test: R=1

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

1

All: R=1

Data

Fit
Y = T

(b) Regression

Figure A.4: Levenberg-Marquardt (Trained network for DJ Industrials returns
1990-2000)

47

0 5 10 15 20 25 30
10

-6

10
-4

10
-2

10
0

10
2

10
4

Best Validation Performance is 2.799e-005 at epoch 32
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

32 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-5
.9

e-
00

5 Training: R=1

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-3
.7

e-
00

5 Validation: R=1

Data

Fit
Y = T

-3 -2 -1 0 1
-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-2
e-

00
5

Test: R=1

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-5
e-

00
5

All: R=1

Data

Fit
Y = T

(b) Regression

Figure A.5: Bayesian Regularization (Trained network for DJ Industrials returns
1990-2000)

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.0037938 at epoch 100

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

96
*T

ar
ge

t+
-0

.0
02

1 Training: R=0.99208

Data

Fit
Y = T

-1 0 1

-1

0

1

Target
O

ut
pu

t~
=

0.
95

*T
ar

ge
t+

-0
.0

04
4 Validation: R=0.99157

Data

Fit
Y = T

-2 -1 0 1
-2

-1

0

1

Target

O
ut

pu
t~

=
0.

95
*T

ar
ge

t+
-0

.0
01

4 Test: R=0.99135

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

96
*T

ar
ge

t+
-0

.0
02

4 All: R=0.99189

Data

Fit
Y = T

(b) Regression

Figure A.6: Resilient Backpropagation (Trained network for DJ Industrials re-
turns 1990-2000)

48

0 5 10 15 20 25 30 35 40
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.00026079 at epoch 41
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

42 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

11
*T

ar
ge

t+
-2

.8

Training: R=0.4038

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
-0

.0
01

9 Validation: R=0.99931

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
-0

.0
03

1 Test: R=0.9991

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

28
*T

ar
ge

t+
-2

All: R=0.098188

Data

Fit
Y = T

(b) Regression

Figure A.7: Conjugate Gradient with Powell/Beale Restarts (Trained network
for DJ Industrials returns 1990-2000)

0 2 4 6 8 10 12
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.0033967 at epoch 12

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

13 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
-0

.2
*T

ar
ge

t+
-1

.6

Training: R=-0.69393

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target
O

ut
pu

t~
=

1*
T

ar
ge

t+
-0

.0
02

1

Validation: R=0.99253

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
5.

5e
-0

05 Test: R=0.99365

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

19
*T

ar
ge

t+
-1

.1

All: R=0.10538

Data

Fit
Y = T

(b) Regression

Figure A.8: Fletcher-Powell Conjugate Gradient (Trained network for DJ In-
dustrials returns 1990-2000)

49

0 5 10 15 20 25 30 35
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Best Validation Performance is 0.0013095 at epoch 36
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

37 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

04
*T

ar
ge

t+
0.

54

Training: R=0.20316

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
-0

.0
00

15 Validation: R=0.99635

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

01
2

Test: R=0.99545

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

34
*T

ar
ge

t+
0.

37

All: R=0.42005

Data

Fit
Y = T

(b) Regression

Figure A.9: Polak-Ribiére Conjugate Gradient (Trained network for DJ Indus-
trials returns 1990-2000)

0 5 10 15 20 25 30 35 40 45
10

-6

10
-4

10
-2

10
0

Best Validation Performance is 0.0012815 at epoch 43

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

49 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-2 -1 0 1

-2

-1

0

1

Target

O
ut

pu
t~

=
-0

.0
16

*T
ar

ge
t+

-1
.8

Training: R=-0.056119

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target
O

ut
pu

t~
=

1*
T

ar
ge

t+
-0

.0
01

3

Validation: R=0.99748

Data

Fit
Y = T

-3 -2 -1 0 1
-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
0.

00
47

Test: R=0.99847

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
0.

29
*T

ar
ge

t+
-1

.3

All: R=0.14511

Data

Fit
Y = T

(b) Regression

Figure A.10: One Step Secant (Trained network for DJ Industrials returns 1990-
2000)

50

0 5 10 15
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.29779 at epoch 9
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

15 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
-0

.1
3*

T
ar

ge
t+

0.
09

7 Training: R=-0.32453

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
-0

.1
3*

T
ar

ge
t+

0.
1

Validation: R=-0.36127

Data

Fit
Y = T

-1 0 1

-1

0

1

Target

O
ut

pu
t~

=
-0

.1
3*

T
ar

ge
t+

-0
.0

22

Test: R=-0.32705

Data

Fit
Y = T

-3 -2 -1 0 1

-3

-2

-1

0

1

Target

O
ut

pu
t~

=
-0

.1
3*

T
ar

ge
t+

0.
08

All: R=-0.32408

Data

Fit
Y = T

(b) Regression

Figure A.11: Variable Learning Rate Gradient Descent (Trained network for DJ
Industrials returns 1990-2000)

0 1 2 3 4 5 6 7
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 6.5282 at epoch 1

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

7 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
-0

.1
7*

T
ar

ge
t+

3.
5

Training: R=-0.67179

Data

Fit
Y = T

-1 0 1 2 3

-1

0

1

2

3

Target
O

ut
pu

t~
=

-0
.1

4*
T

ar
ge

t+
3.

5

Validation: R=-0.67878

Data

Fit
Y = T

-1 0 1 2 3

-1

0

1

2

3

Target

O
ut

pu
t~

=
-0

.1
6*

T
ar

ge
t+

2.
5

Test: R=-0.49836

Data

Fit
Y = T

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
-0

.1
9*

T
ar

ge
t+

3.
4

All: R=-0.2196

Data

Fit
Y = T

(b) Regression

Figure A.12: Gradient Descent with Momentum (Trained network for DJ In-
dustrials returns 1990-2000)

51

0 1 2 3 4 5 6 7
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 6.5282 at epoch 1
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

7 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
-0

.1
7*

T
ar

ge
t+

3.
5

Training: R=-0.67179

Data

Fit
Y = T

-1 0 1 2 3

-1

0

1

2

3

Target

O
ut

pu
t~

=
-0

.1
4*

T
ar

ge
t+

3.
5

Validation: R=-0.67878

Data

Fit
Y = T

-1 0 1 2 3

-1

0

1

2

3

Target

O
ut

pu
t~

=
-0

.1
6*

T
ar

ge
t+

2.
5

Test: R=-0.49836

Data

Fit
Y = T

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
-0

.1
9*

T
ar

ge
t+

3.
4

All: R=-0.2196

Data

Fit
Y = T

(b) Regression

Figure A.13: Gradient Descent (Trained network for DJ Industrials returns
1990-2000)

0 500 1000 1500 2000 2500 3000 3500 4000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

(a) Gradient Descent with Momentum

0 500 1000 1500 2000 2500 3000 3500 4000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

(b) Bayesian Regularization

Figure A.14: Trained network for DJ Industrials returns 1990-2000, log returns,
comparison between two methods

52

0

200

400

600

0

100

200

300
4

6

8

10

12

14

16

Buy threshold: y > theta
b

Strategy Performance % p.a. vs. buy-and-hold

Sell threshold: y < theta
s

P
er

fo
rm

an
ce

 %
 p

.a
.

(a) Strategy returns p.a.

0

200

400

600

050
100

150
200250

300
0

100

200

300

400

Buy threshold: y >

Number of trades

Sell threshold: y < thetas

N
um

be
r

of
 t

ra
de

s

(b) Number of trades with corresponding strat-
egy

0

200

400

600

050100150200250300
20

30

40

50

60

70

80

90

100

Buy threshold: y > th

% of long days

Sell threshold: y < thetas

%
 o

f
da

ys
 lo

ng
 p

os
iti

on
 is

 t
ak

en

(c) % of days long

0

200

400

600

0

100

200

300
20

40

60

80

100

Buy threshold: y > theta
b

% of winning trades

Sell threshold: y < theta
s

%
 o

f
w

in
ni

ng
 t

ra
de

s

(d) % of winning trades

0

200

400

600

0

100

200

300
0

10

20

30

40

50

Buy threshold: y > theta
b

Average Performance per trade

Sell threshold: y < theta
s

A
ve

ra
ge

 %
 r

et
ur

n
pe

r
tr

ad
e

(e) Average performance per trade

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0

20

40

60

80

100

120

140

160

Days

R
et

ur
n

(lo
g)

Index Return (black) vs. Fund Return (red)

(f) Strategy performance as hypothetical fund

Figure A.15: Simulated results of 3-day return forecast with neural network

53

0 500 1000 1500 2000 2500 3000 3500
-50

-40

-30

-20

-10

0

10

20

30

Days

R
et

ur
n

(lo
g)

Index Return (black) vs. Fund Return (red)

(a) Fund performance

-35 -30 -25 -20 -15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Trade Performance %

% performance per trade

N
um

be
r

of
 c

as
es

(b) Trade histogram

Figure A.16: Simulated results of 3-day return forecast with neural network -
out of sample application

54

B Figures for Strategy 2: 1 day price forecast

based on past prices

0 1 2 3 4 5 6

10
-5

10
0

10
5

10
10

10
15

Best Validation Performance is 81.6358 at epoch 0

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

6 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 -5 0

x 10
8

-10

-5

0
x 10

8

Target

O
ut

pu
t~

=
2.

8e
-0

09
*T

ar
ge

t+
-1

.3
e+

00
9

Training: R=-1.3441e-020

Data

Fit
Y = T

-10 -5 0

x 10
8

-10

-5

0
x 10

8

Target

O
ut

pu
t~

=
-7

.9
e-

00
8*

T
ar

ge
t+

-1
.3

e+
00

9

Validation: R=-1.1936e-021

Data

Fit
Y = T

-10 -5 0 5

-10

-5

0

5

Target

O
ut

pu
t~

=
-0

.2
4*

T
ar

ge
t+

-8
.8

Test: R=-0.43562

Data

Fit
Y = T

-10 -5 0

x 10
8

-10

-5

0
x 10

8

Target

O
ut

pu
t~

=
-5

.6
e+

00
6*

T
ar

ge
t+

-1
.1

e+
00

9

All: R=-0.011949

Data

Fit
Y = T

(b) Regression

Figure B.1: Gradient Descent (Trained network for DJ Industrials returns 1990-
2000)

0 10 20 30 40 50
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.0012369 at epoch 50

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

56 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-5 0 5

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

3.
4e

-0
05

Training: R=0.99905

Data

Fit
Y = T

-4 -2 0 2 4 6
-4

-2

0

2

4

6

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

21

Validation: R=0.99908

Data

Fit
Y = T

-10 -5 0 5

-10

-5

0

5

Target

O
ut

pu
t~

=
1.

1*
T

ar
ge

t+
-0

.0
04

3 Test: R=0.99309

Data

Fit
Y = T

-10 -5 0 5

-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

00
94

All: R=0.99778

Data

Fit
Y = T

(b) Regression

Figure B.2: Scaled conjugate gradient (Trained network for DJ Industrials re-
turns 1990-2000)

55

0 5 10 15 20 25 30 35 40
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 2.358e-005 at epoch 36
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

42 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-20 -10 0

-20

-10

0

Target

O
ut

pu
t~

=
1.

1*
T

ar
ge

t+
-2

4

Training: R=0.81112

Data

Fit
Y = T

-4 -2 0 2 4

-4

-2

0

2

4

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

00
24

Validation: R=0.99999

Data

Fit
Y = T

-4 -2 0 2 4 6
-4

-2

0

2

4

6

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

04
2

Test: R=0.99999

Data

Fit
Y = T

-20 -10 0

-20

-10

0

Target

O
ut

pu
t~

=
1.

3*
T

ar
ge

t+
-1

6

All: R=0.11804

Data

Fit
Y = T

(b) Regression

Figure B.3: BFGS quasi Newton (Trained network for DJ Industrials returns
1990-2000)

0 1 2 3 4 5 6 7 8 9
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 2.2669e-006 at epoch 9

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

9 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-5 0 5

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

01
3

Training: R=1

Data

Fit
Y = T

-4 -2 0 2 4 6

-4

-2

0

2

4

6

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

01
3

Validation: R=1

Data

Fit
Y = T

-15 -10 -5 0

-15

-10

-5

0

Target

O
ut

pu
t~

=
1.

2*
T

ar
ge

t+
-0

.0
24

Test: R=0.96204

Data

Fit
Y = T

-15 -10 -5 0 5

-15

-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.0

05
1

All: R=0.98734

Data

Fit
Y = T

(b) Regression

Figure B.4: Levenberg-Marquardt (Trained network for DJ Industrials returns
1990-2000)

56

0 1 2 3 4 5 6 7 8

10
-5

10
0

10
5

Best Validation Performance is 7.2872e-008 at epoch 8
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

8 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

3.
9e

-0
07

Training: R=1

Data

Fit
Y = T

-4 -2 0 2 4

-4

-2

0

2

4

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-2
.2

e-
00

7 Validation: R=1

Data

Fit
Y = T

-4 -2 0 2 4 6
-4

-2

0

2

4

6

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

2.
9e

-0
09

Test: R=1

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

2.
4e

-0
07

All: R=1

Data

Fit
Y = T

(b) Regression

Figure B.5: Bayesian Regularization (Trained network for DJ Industrials returns
1990-2000)

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.0012437 at epoch 99

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-5 0 5

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

14

Training: R=0.99939

Data

Fit
Y = T

-4 -2 0 2 4
-4

-2

0

2

4

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

17

Validation: R=0.99935

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

1

Test: R=0.9991

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

13

All: R=0.99933

Data

Fit
Y = T

(b) Regression

Figure B.6: Resilient Backpropagation (Trained network for DJ Industrials re-
turns 1990-2000)

57

0 0.5 1 1.5 2 2.5 3
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.26261 at epoch 2
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

3 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 0 10 20
-10

0

10

20

Target

O
ut

pu
t~

=
1.

9*
T

ar
ge

t+
17

Training: R=0.98111

Data

Fit
Y = T

-8 -6 -4 -2 0 2 4

-8

-6

-4

-2

0

2

4

Target

O
ut

pu
t~

=
0.

97
*T

ar
ge

t+
-0

.0
34

Validation: R=0.88338

Data

Fit
Y = T

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

-0
.1

1

Test: R=0.88642

Data

Fit
Y = T

-10 0 10 20
-10

0

10

20

Target

O
ut

pu
t~

=
1.

7*
T

ar
ge

t+
12

All: R=0.20661

Data

Fit
Y = T

(b) Regression

Figure B.7: Conjugate Gradient with Powell/Beale Restarts (Trained network
for DJ Industrials returns 1990-2000)

0 5 10 15 20 25 30
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.0058548 at epoch 31

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

32 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 0 10
-10

0

10

Target

O
ut

pu
t~

=
0.

27
*T

ar
ge

t+
17

Training: R=0.1712

Data

Fit
Y = T

-2 0 2 4

-2

0

2

4

Target

O
ut

pu
t~

=
0.

98
*T

ar
ge

t+
-0

.0
05

7 Validation: R=0.99679

Data

Fit
Y = T

-4 -2 0 2

-4

-2

0

2

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

04
7

Test: R=0.99917

Data

Fit
Y = T

-10 0 10
-10

0

10

Target

O
ut

pu
t~

=
0.

44
*T

ar
ge

t+
12

All: R=0.056121

Data

Fit
Y = T

(b) Regression

Figure B.8: Fletcher-Powell Conjugate Gradient (Trained network for DJ In-
dustrials returns 1990-2000)

58

0 5 10 15 20 25 30 35 40
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.0022844 at epoch 38
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

44 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-15 -10 -5 0 5

-15

-10

-5

0

5

Target

O
ut

pu
t~

=
-0

.5
*T

ar
ge

t+
-1

6

Training: R=-0.45695

Data

Fit
Y = T

-4 -2 0 2 4

-4

-2

0

2

4

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

0.
00

03

Validation: R=0.99849

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

97
*T

ar
ge

t+
-0

.0
08

2 Test: R=0.99781

Data

Fit
Y = T

-15 -10 -5 0 5

-15

-10

-5

0

5

Target

O
ut

pu
t~

=
0.

11
*T

ar
ge

t+
-1

1

All: R=0.014181

Data

Fit
Y = T

(b) Regression

Figure B.9: Polak-Ribiére Conjugate Gradient (Trained network for DJ Indus-
trials returns 1990-2000)

0 5 10 15 20 25
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.041082 at epoch 20

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

26 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-20 -10 0
-20

-10

0

Target

O
ut

pu
t~

=
-0

.8
3*

T
ar

ge
t+

-1
6

Training: R=-0.65919

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

93
*T

ar
ge

t+
0.

00
75

Validation: R=0.9819

Data

Fit
Y = T

-8 -6 -4 -2 0 2

-8

-6

-4

-2

0

2

Target

O
ut

pu
t~

=
0.

96
*T

ar
ge

t+
-0

.0
14

Test: R=0.98957

Data

Fit
Y = T

-20 -10 0
-20

-10

0

Target

O
ut

pu
t~

=
-0

.4
4*

T
ar

ge
t+

-1
2

All: R=-0.057579

Data

Fit
Y = T

(b) Regression

Figure B.10: One Step Secant (Trained network for DJ Industrials returns 1990-
2000)

59

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.014593 at epoch 100
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

96
*T

ar
ge

t+
0.

00
39

Training: R=0.9914

Data

Fit
Y = T

-5 0 5

-5

0

5

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
-0

.0
03

1 Validation: R=0.99384

Data

Fit
Y = T

-4 -2 0 2 4
-4

-2

0

2

4

Target

O
ut

pu
t~

=
0.

98
*T

ar
ge

t+
0.

00
46

Test: R=0.99562

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

97
*T

ar
ge

t+
0.

00
27

All: R=0.99234

Data

Fit
Y = T

(b) Regression

Figure B.11: Variable Learning Rate Gradient Descent (Trained network for DJ
Industrials returns 1990-2000)

0 1 2 3 4 5 6

10
-5

10
0

10
5

Best Validation Performance is 72.2622 at epoch 0

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

6 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 200 400 600 800
0

200

400

600

800

TargetO
ut

pu
t~

=
0.

01
6*

T
ar

ge
t+

9.
9e

+
00

2

Training: R=0.23461

Data

Fit
Y = T

0 200 400 600 800
0

200

400

600

800

Target

O
ut

pu
t~

=
0.

19
*T

ar
ge

t+
9.

9e
+

00
2 Validation: R=0.43794

Data

Fit
Y = T

-10 -5 0 5

-10

-5

0

5

Target

O
ut

pu
t~

=
1.

3*
T

ar
ge

t+
-8

.4

Test: R=0.84663

Data

Fit
Y = T

0 200 400 600 800
0

200

400

600

800

Target

O
ut

pu
t~

=
1.

4*
T

ar
ge

t+
8.

4e
+

00
2 All: R=0.0040441

Data

Fit
Y = T

(b) Regression

Figure B.12: Gradient Descent with Momentum (Trained network for DJ In-
dustrials returns 1990-2000)

60

0 500 1000 1500 2000 2500 3000 3500 4000
-15

-10

-5

0

5

10

(a) Gradient Descent with Momentum

0 500 1000 1500 2000 2500 3000 3500 4000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

(b) Bayesian Regularization

Figure B.13: Trained network for DJ Industrials returns 1990-2000, log returns,
comparison between two methods

61

0

200

400

600

0
50

100
150

200
250

300
6

8

10

12

14

16

Buy threshold: y > the

Strategy Performance % p.a. vs. buy-and-hold

Sell threshold: y < theta
s

P
er

fo
rm

an
ce

 %
 p

.a
.

(a) Strategy returns p.a.

0

200

400

600

050100150200250300
0

200

400

600

800

1000

Buy threshold: y >

Number of trades

Sell threshold: y < theta
s

N
um

be
r

of
 t

ra
de

s

(b) Number of trades with corresponding strat-
egy

0

200

400

600

050100150200250300
20

30

40

50

60

70

80

90

100

Buy thresho

% of long days

Sell threshold: y < theta
s

%
 o

f
da

ys
 lo

ng
 p

os
iti

on
 is

 t
ak

en

(c) % of days long

0

200

400

600

050100150200250300
30

35

40

45

50

55

60

65

Buy threshold: y >

% of winning trades

Sell threshold: y < theta
s

%
 o

f
w

in
ni

ng
 t

ra
de

s

(d) % of winning trades

0

500

1000

050100150200250300
0

0.5

1

1.5

2

2.5

3

Buy threshold: y

Average Performance per trade

Sell threshold: y < theta
s

A
ve

ra
ge

 %
 r

et
ur

n
pe

r
tr

ad
e

(e) Average performance per trade

0 500 1000 1500 2000 2500 3000 3500 4000
-20

0

20

40

60

80

100

120

140

160

Days

R
et

ur
n

(lo
g)

Index Return (black) vs. Fund Return (red)

(f) Strategy performance as hypothetical fund

Figure B.14: Simulated results of 1-day return forecast with neural network

62

C Figures for Strategy 3: forecast based on �-

nancial factors

0 1 2 3 4 5 6

10
0

10
20

10
40

10
60

10
80

10
100

Best Validation Performance is 11799046.62 at epoch 0

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

6 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-1

-0.5

0

0.5

1

1.5

2
x 10

4

(b) Output signal

Figure C.1: Gradient Descent (Trained network for DJ Industrials returns 1990-
2000)

0 10 20 30 40 50 60 70 80 90 100

10
-5

10
0

10
5

Best Validation Performance is 5839.9407 at epoch 97

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-5000

-4000

-3000

-2000

-1000

0

1000

(b) Network output

Figure C.2: Scaled conjugate gradient (Trained network for DJ Industrials re-
turns 1990-2000)

63

0 5 10 15 20 25 30

10
-5

10
0

10
5

Best Validation Performance is 357021.06 at epoch 32
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

32 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

12000

(b) Network output

Figure C.3: BFGS quasi Newton (Trained network for DJ Industrials returns
1990-2000)

0 5 10 15

10
-5

10
0

10
5

10
10

Best Validation Performance is 9632.4239 at epoch 9

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

15 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-15

-10

-5

0

5

10

15

20

(b) Network output

Figure C.4: Levenberg-Marquardt (Trained network for DJ Industrials returns
1990-2000)

64

0 1 2 3 4 5 6 7 8 9 10 11

10
-5

10
0

10
5

10
10

Best Validation Performance is 50261301.5806 at epoch 8
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

11 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-2

-1

0

1

2

3

4

5

6

7

8

(b) Network output

Figure C.5: Bayesian Regularization (Trained network for DJ Industrials returns
1990-2000)

0 10 20 30 40 50 60 70 80 90 100

10
-5

10
0

10
5

Best Validation Performance is 24210.8413 at epoch 100

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

(b) Network output

Figure C.6: Resilient Backpropagation (Trained network for DJ Industrials re-
turns 1990-2000)

65

0 5 10 15

10
-5

10
0

10
5

10
10

Best Validation Performance is 2732.7463 at epoch 14
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

15 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-4000

-3000

-2000

-1000

0

1000

2000

(b) Regression

Figure C.7: Conjugate Gradient with Powell/Beale Restarts (Trained network
for DJ Industrials returns 1990-2000)

0 5 10 15 20 25 30 35 40 45 50

10
-5

10
0

10
5

Best Validation Performance is 16111.5459 at epoch 51

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

52 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

(b) Network output

Figure C.8: Fletcher-Powell Conjugate Gradient (Trained network for DJ In-
dustrials returns 1990-2000)

66

0 5 10 15 20 25 30 35 40 45 50

10
-5

10
0

10
5

Best Validation Performance is 16111.5459 at epoch 51
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

52 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

(b) Network output

Figure C.9: Polak-Ribiére Conjugate Gradient (Trained network for DJ Indus-
trials returns 1990-2000)

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

10
4

10
6

Best Validation Performance is 15129.8116 at epoch 100

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

(b) Network output

Figure C.10: One Step Secant (Trained network for DJ Industrials returns 1990-
2000)

67

0 10 20 30 40 50 60 70 80 90 100
10

-6

10
-4

10
-2

10
0

10
2

Best Validation Performance is 0.014593 at epoch 100
M

ea
n

S
qu

ar
ed

 E
rr

or

(m
se

)

100 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

96
*T

ar
ge

t+
0.

00
39

Training: R=0.9914

Data

Fit
Y = T

-5 0 5

-5

0

5

Target

O
ut

pu
t~

=
0.

99
*T

ar
ge

t+
-0

.0
03

1 Validation: R=0.99384

Data

Fit
Y = T

-4 -2 0 2 4
-4

-2

0

2

4

Target

O
ut

pu
t~

=
0.

98
*T

ar
ge

t+
0.

00
46

Test: R=0.99562

Data

Fit
Y = T

-10 -5 0 5
-10

-5

0

5

Target

O
ut

pu
t~

=
0.

97
*T

ar
ge

t+
0.

00
27

All: R=0.99234

Data

Fit
Y = T

(b) Regression

Figure C.11: Variable Learning Rate Gradient Descent (Trained network for DJ
Industrials returns 1990-2000)

0 1 2 3 4 5 6

10
0

10
20

10
40

10
60

10
80

10
100

Best Validation Performance is 1962658983.6456 at epoch 0

M
ea

n
S

qu
ar

ed
 E

rr
or

(m

se
)

6 Epochs

Train

Validation

Test
Best

Goal

(a) MSE

0 2 4 6 8 10 12 14

x 10
4

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2
x 10

4

(b) Network output

Figure C.12: Gradient Descent with Momentum (Trained network for DJ In-
dustrials returns 1990-2000)

68

0 1000 2000 3000 4000 5000 6000 7000 8000
-50

0

50

100

150

200

250

300

350

Days

R
et

ur
n

(lo
g)

Index Return (black) vs. Fund Return (red)

(a) Simulated fund performance (red) vs. buy-
and-hold performance

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

Days

of

 in
ve

st
m

en
ts

Amount of investments in index (black) vs. Fund Return (red)

(b) Amount of long positions in di�erent stocks
of the S&P100

-100 -50 0 50
0

2

4

6

8

10

12

14

16

18
Strategy Performance p.a. %

% p.a.

N
um

be
r

of
 c

as
es

(c) Histogram with di�erent stocks - outperfor-
mance of strategy

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

50
Number of trades

Number of trades

N
um

be
r

of
 c

as
es

(d) Histogram showing number of trades with
each stock

36 38 40 42 44 46 48 50 52
0

2

4

6

8

10

12

14

16
% of winning trades

% of winning trades

N
um

be
r

of
 c

as
es

(e) Histogram with % of winning trades

-60 -50 -40 -30 -20 -10 0 10 20 30
0

5

10

15

20

25
Strategy Outperformance %

Outperformance % p.a.

N
um

be
r

of
 c

as
es

(f) Strategy outperformance

Figure C.13: Strategy results with �nancial factors as input neurons

69

D Program Listings

D.1 Neural Network

D.1.1 Neural Network Main program (training) [training.m]

1 clear;

2 clear n;

3 method =4; % 0=sigmoid , 1=tanh , 2=linear , 4= Newton method

4 %output node always uses linear

5

6 learningRate =0.15;

7 normalize =0;

8 first_input =1;

9 last_output =8;

10

11 for x=1:8

12 n(x)=NeuronNewton;

13 end

14

15 % node connections

16 %n=n.addConnection (3, 1, 1.2, -0.1); % target , origin , weight ,

bias

17 %n=n.addConnection (3, 2, 1.25 , -0.1);

18 %n=n.addConnection (4, 1, 1.3, -0.15);

19 %n=n.addConnection (4, 2, -0.1,-0.15);

20 %n=n.addConnection (5, 3, -0.1, 0.05);

21 %n=n.addConnection (5, 4, 0.2, 0.05);

22

23 % Nicolas Coursework

24 %n=n.addConnection (3, 1, 0.23, 0.0); % target , origin , weight ,

bias

25 %n=n.addConnection (4, 2, 0.14, 0.0);

26 %n=n.addConnection (5, 2, 0.3, 0.0);

27 %n=n.addConnection (5, 1, -0.35, 0.0);

28 %n=n.addConnection (6, 3, 0.1, 0.0);

29 %n=n.addConnection (6, 4, -0.2, 0.0);

30 %n=n.addConnection (6, 5, -0.4, 0.0);

31 %n=n.addConnection (6, 1, 0.3, 0.0);

32

33 % Irati coursework

34 n=n.addConnection (3, 1, 0.14, 0.0); % target , origin , weight ,

bias

35 n=n.addConnection (4, 2, -0.3, 0.0);

36 n=n.addConnection (5, 2, -0.1, 0.0);

37 n=n.addConnection (5, 1, 0.5, 0.0);

70

38 n=n.addConnection (6, 3, 0.4, 0.0);

39 n=n.addConnection (6, 4, -0.4, 0.0);

40 n=n.addConnection (6, 5, -0.15, 0.0);

41 n=n.addConnection (6, 1, -0.23, 0.0);

42

43

44 % define structure (type =0: input node , type =1: hidden node , type

=2: output

45 % node

46 n(1).type =0;

47 n(2).type =0;

48 n(3).type =1;

49 n(4).type =1;

50 n(5).type =1;

51 n(6).type =2;

52

53

54

55

56 for i=1:1

57

58 % input nodes

59 n(1).output =1;%round(rand (1)); %input values for input nodes

60 n(2).output =0;%round(rand (1));

61

62 endvalue=xor(n(1).output , n(2).output); %output node correct

result

63

64

65 % generate output for forward propagation

66 n(3)=n(3).getOutput(n,0);

67 n(4)=n(4).getOutput(n,0);

68 n(5)=n(5).getOutput(n,0);

69 n(6)=n(6).getOutput(n,2);

70

71

72 % backward propagation

73 n=n.backProp(6,endvalue ,2);

74 n=n.backProp(5,endvalue ,0);

75 n=n.backProp(4,endvalue ,0);

76 n=n.backProp(3,endvalue ,0);

77

78 if method <4 % MPL method

79 [n]=n.weightUpdate (6, learningRate);

80 [n]=n.weightUpdate (5, learningRate);

81 [n]=n.weightUpdate (4, learningRate);

71

82 [n]=n.weightUpdate (3, learningRate);

83

84 elseif method ==4 % Newton method

85 % weight updating

86 [n,j]=n.weightUpdate (6,j);

87 [n,j]=n.weightUpdate (5,j);

88 [n,j]=n.weightUpdate (4,j);

89 [n,j]=n.weightUpdate (3,j);

90

91

92 %calculate hessian

93 H=j*j';

94 h=1/H;

95 %update weights

96 [n]=n.weightUpdateNewton (6,h);

97 [n]=n.weightUpdateNewton (5,h);

98 [n]=n.weightUpdateNewton (4,h);

99 [n]=n.weightUpdateNewton (3,h);

100

101 end

102

103

104 %result(i)=round(n(5).output)== endvalue;

105

106 end

107

108 for nx=3:6

109 node=nx %output result

110 n(nx).inputweight

111 end

112

113

114 %figure (1)

115 %plot((n(6).deltaHistory).^2)

116 %figure (2)

117 %plot (result);

D.1.2 Neuron Class [Neuron.m]

1 classdef Neuron

2 %Neuron for neuronal network

3 %

4

5 properties

6 bias

72

7 inputweight

8 connections % backward looking connections

9 followers % forward looking connections

10 type

11 output

12 beta

13 delta

14 previous_delta

15 delta_bias

16

17 deltaHistory

18 biasHistory

19 firstWeightHistory

20 end

21

22 methods

23 function [this]= getOutput(this ,neurons ,param)

24

25 this.output=this.bias;

26

27 for n=1: numel(this.connections)

28 this.output=this.output+this.inputweight(n)*

neurons(this.connections(n)).output;

29 end

30

31 if param ==0 this.output=sigmoid(this.

output); end

32 if param ==1 this.output=tanh_backprop(

this.output); end

33 if param ==2 this.output=this.output; end

34 if param ==3 this.output=tanh_backprop(

this.output); end

35 if param ==4 this.output=tanh_backprop(

this.output); end

36

37

38

39 end

40

41 function [neuron]= addConnection(neuron ,target ,origin ,

weight ,bias)

42 neuron(target).connections(numel(neuron(target).

connections)+1)=origin;

43 neuron(target).inputweight(numel(neuron(target).

inputweight)+1)=weight;

44 neuron(target).bias (1)=bias;

73

45 neuron(origin).followers(numel(neuron(origin).

followers)+1)=target;

46 end

47

48 function [neuron]= backProp(neuron ,id,d,method)

49 y=neuron(id).output;

50 if neuron(id).type ==2 % end node

51

52 if method ==0 neuron(id).beta=(d-y)*y*(1-y); end %

d: correct value , y: output value

53 if method ==1 neuron(id).beta=(d-y)*(1-y*y); end %

d: correct value , y: output value

54 if method ==2 neuron(id).beta=(d-y)*(1); end % d:

correct value , y: output value

55 if method ==3 neuron(id).beta=(d-y)*(1-y*y); end %

d: correct value , y: output value

56 if method ==4 % special case for newton method and

output neuron , betaJ needs to be 1

57 neuron(id).betaJ =1; % outbut beta shoud be

one

58 neuron(id).beta=(d-y)*1;

59 end

60

61

62 elseif neuron(id).type ==1 % inner node

63 for f=1: numel(neuron(id).followers)

64 if method ==4

65 b (f)=neuron(neuron(id).followers(f)).

beta;

66 bj(f)=neuron(neuron(id).followers(f)).

betaJ;

67 else

68 b(f)=neuron(neuron(id).followers(f)).beta

;

69 end

70

71

72 search=numel(neuron(neuron(id).followers(f)).

connections);

73 for s=1: search

74 if neuron(neuron(id).followers(f)).

connections(s)==id

75 w(f)=neuron(neuron(id).followers(f)).

inputweight(s);

76 %break;

74

77 %w(f)=interp1 (neuron(neuron(id).

followers(f)).connections , neuron(

neuron(id).followers(f)).

inputweight , id, 'nearest '); % fwd

weight lookup

78 end

79 end

80

81

82

83 end

84 q=0;

85 qj=0;

86 for f=1: numel(neuron(id).followers)

87 q= q +w(f)*b (f);

88 if method ==4

89 qj=qj+w(f); % bj is not multiplied by the

beta

90 end

91 end

92 if method ==0 neuron(id).beta=(q)*y*(1-y); end

93 if method ==1 neuron(id).beta=(q)*(1-y*y); end

94 if method ==2 neuron(id).beta=(q)*(1); end

95 if method ==3 neuron(id).beta=(q)*(1-y*y); end

96 if method ==4 neuron(id).betaJ =(qj)*(1-y*y); % bj

is not multiplied by the beta

97 neuron(id).beta= (q) *(1-y*y);

98 end %Newton

99 end

100 neuron(id).deltaHistory(numel(neuron(id).deltaHistory

)+1)=(d-y)*(d-y);%neuron(id).beta;

101 %neuron(id).History(numel(neuron(id).biasHistory)+1)=

neuron(id).bias;

102 neuron(id).firstWeightHistory(numel(neuron(id).

firstWeightHistory)+1)=neuron(id).inputweight (1);

103 end

104

105

106

107 function [neuron]= weightUpdate(neuron ,id,learningRate ,

method ,firstTake ,momentum)

108 neuron(id).delta_bias=neuron(id).beta*learningRate;

109 neuron(id).bias = 0;%neuron(id).bias + neuron(id).

delta_bias;

110 for n=1: numel(neuron(id).connections)

111 if method ==3

75

112 if firstTake ==true neuron(id).delta(n)=0;

113 neuron(id).delta(n);

114 end

115 neuron(id).delta(n) = neuron(id).delta(n) +

neuron(id).beta * learningRate * neuron(

neuron(id).connections(n)).output;

116 else

117 if firstTake ==true neuron(id).previous_delta(

n)=0; end

118 neuron(id).delta(n)=neuron(id).beta*

learningRate*neuron(neuron(id).connections(

n)).output;

119 neuron(id).inputweight(n) = neuron(id).

inputweight(n) + neuron(id).delta(n)*(1-

momentum) + momentum*neuron(id).

previous_delta(n);

120 end

121 end

122 neuron(id).previous_delta=neuron(id).delta;

123 end

124

125

126 function [neuron]= batchUpdate(neuron ,id,learningRate)

127 neuron(id).delta_bias=neuron(id).beta*learningRate;

128 neuron(id).bias = 0;%neuron(id).bias + neuron(id).

delta_bias;

129 for n=1: numel(neuron(id).connections)

130 neuron(id).delta(n);

131 neuron(id).inputweight(n) = neuron(id).

inputweight(n) + neuron(id).delta(n);

132 neuron(id).delta(n)=0;

133 end

134 end

135 end

136 end

D.1.3 Neuron Class [NeuronNewton.m]

1 classdef NeuronNewton < Neuron % inherit Neuron class

2 %Neuron for neuronal network for quasi -Newton method

3 %

4

5 properties

6 betaJ

7 end

76

8

9

10 methods

11

12

13 function [neuron ,j,g,nCounter ,connectionCount]=calc(

neuron ,id,j,g,nCounter ,connectionCount) % override

weightUpdate function

14 for n=1: numel(neuron(id).connections)

15 nCounter=nCounter +1;

16 j (nCounter) = neuron(id).betaJ * neuron(neuron(

id).connections(n)).output;

17 g (nCounter) = neuron(id).beta * neuron(neuron(

id).connections(n)).output + g (nCounter);

18 end

19 end

20

21 function [neuron ,nCounter]= weightUpdateNewton(neuron ,id,d

,nCounter ,learningRate)

22 for n=1: numel(neuron(id).connections)

23 nCounter=nCounter +1;

24 neuron(id).delta(n)=d(nCounter);

25 neuron(id).inputweight(n) = neuron(id).

inputweight(n) + neuron(id).delta(n)*

learningRate;

26 end

27 end

28 end

29 end

D.1.4 Forward Propagation Function [NeuronCalc.m]

1 classdef NeuronNewton < Neuron % inherit Neuron class

2 %Neuron for neuronal network for quasi -Newton method

3 %

4

5 properties

6 betaJ

7 end

8

9

10 methods

11

12

77

13 function [neuron ,j,g,nCounter ,connectionCount]=calc(

neuron ,id,j,g,nCounter ,connectionCount) % override

weightUpdate function

14 for n=1: numel(neuron(id).connections)

15 nCounter=nCounter +1;

16 j (nCounter) = neuron(id).betaJ * neuron(neuron(

id).connections(n)).output;

17 g (nCounter) = neuron(id).beta * neuron(neuron(

id).connections(n)).output + g (nCounter);

18 end

19 end

20

21 function [neuron ,nCounter]= weightUpdateNewton(neuron ,id,d

,nCounter ,learningRate)

22 for n=1: numel(neuron(id).connections)

23 nCounter=nCounter +1;

24 neuron(id).delta(n)=d(nCounter);

25 neuron(id).inputweight(n) = neuron(id).

inputweight(n) + neuron(id).delta(n)*

learningRate;

26 end

27 end

28 end

29 end

D.1.5 Sigmoid function [sigmoid.m]

1 function [y] = sigmoid(x)

2 % Outputs the sigmoid function s(x)

3

4 y=1./(1+ exp(-(x)));

5 %y=1 -2./(exp (2*x)+1);

6

7 end

D.1.6 Neural Network Training with Toolbox [train_matlab1.m]

1 % Solve an Input -Output Fitting problem with a Neural Network

2 % Script generated by NFTOOL

3 %

4 % This script assumes these variables are defined:

5 %

6 % houseInputs - input data.

78

7 % houseTargets - target data.

8 clear all;

9

10 [p,t,series_n]= createInputOutput2; % create continous output

11

12 %net = newff(p,t,5,{},'traingd '); % gradient descent

13 %net = newff(p,t,5,{},'trainscg ');% Scaled Conjugate Gradient

14 %net = newff(p,t,5,{},'trainbfg '); % BFGS Quasi -Newton

15

16 %net = newff(p,t,5,{},'trainlm '); % Levenberg -Marquardt

17 net = newff(p,t,5,{},'trainbr '); % Bayesian Regularization

18 %net = newff(p,t,5,{},'trainrp '); % Resilient Backpropagation

19 %net = newff(p,t,5,{},'traincgb ');% Conjugate Gradient with

Powell/Beale Restarts

20 %net = newff(p,t,5,{},'traincgf ');% Fletcher -Powell Conjugate

Gradient

21 %net = newff(p,t,5,{},'traincgp ');% Polak -Ribiére Conjugate

Gradient

22 %net = newff(p,t,5,{},'trainoss ');% One Step Secant

23 %net = newff(p,t,5,{},'traingdx ');% Variable Learning Rate

Gradient Descent

24 %net = newff(p,t,5,{},'traingdm ');% Gradient Descent with

Momentum

25

26

27 net.divideFcn = 'dividerand ';

28

29 %net.trainParam.show = 50;

30 net.trainParam.lr = 0.1;

31 net.trainParam.epochs = 100;

32 net.trainParam.goal = 1e-5;

33 net.layers {1}. transferFcn = 'logsig ';

34 net.divideParam.trainRatio = 70/100;

35 net.divideParam.valRatio = 15/100;

36 net.divideParam.testRatio = 15/100;

37 %net.trainParam.showWindow =0;

38

39

40 [net ,tr]=train(net ,p,t);

41 %plotperform(tr);

42

43

44 figure (1);

45 plot(series_n (:,1),'b');

46 hold on;

47 plot(sim(net ,p(:,:)),'r');

79

48 hold off;

D.1.7 Neural Network Training with Toolbox [train_matlab3.m]

1 % Solve an Input -Output Fitting problem with a Neural Network

2 % Script generated by NFTOOL

3 %

4 % This script assumes these variables are defined:

5 %

6 % houseInputs - input data.

7 % houseTargets - target data.

8

9 %{

10 clear all;

11

12 mode =47;

13 [x1 ,xs,x2 ,y1,ys ,y2,z1,zs,z2,n1 ,ns,n2 ,c,ms , strategy , filename ,

sheetname , total_calculations] = trading_presets(mode);

14

15 TS=TimeSeries;

16 TS=load_time_series(TS, filename , sheetname , n1,ns,n2 ,c,ms); %

load time serie

17

18

19 %}

20

21 % put together training matrixes

22 a=1;

23 x=0;

24 for n=4:102

25 for i=10:TS(n).number_of_returns -31

26 % data check

27 if ~isnan (sum(TS(n).returns_normalized(i:i+1))) && ~

isnan (sum(TS(n).second(i-a:i))) && ~isnan (sum(TS(

n).third(i-a:i))) && ~isnan (sum(TS(n).prices(i-a:i

)))

28 x=x+1;

29 % p=inputs

30 p(1,x)=TS(n).second(i)/TS(n).second(i-a) -1;

31 p(2,x)=TS(n).third(i)/TS(n).second(i-a) -1;

32 p(3,x)=TS(n).fourth(i)/TS(n).second(i-a) -1;

33 % t=targets or outputs

34 t(x)=TS(n).returns_normalized(i+a)/TS(n).

returns_normalized(i) -1;

35 if mod(x ,10000) ==0

80

36 complete_est=x/700000*100

37 end;

38 end

39

40 end

41 end

42

43

44 %net = newff(p,t,10,{},'traingd '); % gradient descent

45 %net = newff(p,t,10,{},'trainscg ');% Scaled Conjugate Gradient

46 %net = newff(p,t,10,{},'trainbfg '); % BFGS Quasi -Newton

47

48 %net = newff(p,t,10,{},'trainlm '); % Levenberg -Marquardt

49 %net = newff(p,t,10,{},'trainbr '); % Bayesian Regularization

50 %net = newff(p,t,10,{},'trainrp '); % Resilient Backpropagation

51 %net = newff(p,t,10,{},'traincgb ');% Conjugate Gradient with

Powell/Beale Restarts

52 %net = newff(p,t,10,{},'traincgf ');% Fletcher -Powell Conjugate

Gradient

53 %net = newff(p,t,10,{},'traincgp ');% Polak -Ribiére Conjugate

Gradient

54 %net = newff(p,t,10,{},'trainoss ');% One Step Secant

55 %net = newff(p,t,10,{},'traingdx ');% Variable Learning Rate

Gradient Descent

56 net = newff(p,t,10,{},'traingdm ');% Gradient Descent with

Momentum

57

58

59 net.divideFcn = 'dividerand ';

60

61 %net.trainParam.show = 50;

62 net.trainParam.lr = 0.1;

63 net.trainParam.epochs = 100;

64 net.trainParam.goal = 1e-5;

65 net.layers {1}. transferFcn = 'logsig ';

66 net.divideParam.trainRatio = 70/100;

67 net.divideParam.valRatio = 15/100;

68 net.divideParam.testRatio = 15/100;

69 %net.trainParam.showWindow =0;

70

71

72 [net ,tr]=train(net ,p,t);

73 %plotperform(tr);

74

75

76 figure (1);

81

77 %plot(series_n (:,1) ,'b');

78 %hold on;

79 plot(sim(net ,p(:,:)),'r');

80 hold off;

D.2 Trading Simulator

D.2.1 Main program [main.m]

1 clear;

2 clear classes; nn=0;

3

4 %% Objects

5 % TS: time series data

6 % F: Total Fund returns and Index returns on daily basis

7 % G: strategy: Subclass of trade_generator which communicates

with the strategy

8 % T: trades

9 % A: analysis of a specific scenario (i.e. summing up the trades)

10 % O: optimum and graphs

11 %% Parameters

12

13 %mode =1; % Buying after selloff after several months , then

profittaking

14 %mode =5; % Buying after selloff after several months , x day sell

15 %mode =2; % Buying after selloff after several days , then

profittaking

16 %mode =21; % Buying after selloff after several days , then

profittaking one case

17

18 %mode =3; % Buying after selloff after several months , buying

after days

19

20 %mode =4; % Buying after selloff after several days , then

profittaking SMI

21 %mode =6; % Payout ratio *

22

23 %mode =8; % Stop loss and buy after reaching x day low *

24 %mode =9; % Special Stop loss and buy after reaching x day low

25 %mode =10; % Analyst recommendations

26 %mode =11; % Analyst recommendations test

27 %mode =19; % Special stop strategy: dynamic stop , buy after price >

sell price

28

29 %mode =29; % Coppock curve

82

30

31 %mode =30; % Moving average *

32

33 %mode =40; load('trained -5 inputNeurons.mat '); % Neural Network 1

34 %mode =41; load('trained -5 inputNeurons.mat '); % Neural Network 1

35

36 %mode =42; load('trained -10 inputNeurons -5d-5t.mat '); % Neural

Network 1

37 %mode =43; load('trained -10 inputNeurons -5d-5t.mat '); % Neural

Network 1

38

39 %mode =44; load('net2.mat '); nn=net; % Neural Network 2

40 %mode =45; load('net2.mat '); nn=net; % Neural Network 2

41

42 %mode =46; load('net2b.mat '); nn=net; % Neural Network 2

43

44 mode =47; load('net3.mat'); nn=net; % Neural Network 3

45

46

47 %mode =101; % quick: Buying after selloff after several days , then

profittaking

48 %mode =1001; % SP100 , one case

49

50 %mode =9000; % testsheet

51

52 [x1 ,xs,x2 ,y1,ys ,y2,z1,zs,z2,n1 ,ns,n2 ,c,ms , strategy , filename ,

sheetname , total_calculations] = trading_presets(mode);

53

54 %% Start of main program

55

56 rf=2; % 2 pct risk free rate

57

58 graphmode =1; % 1: more than one

case

59 if x2-x1+y2-y1+z2 -z1+n2 -n1==0 graphmode =2 ; end % 2: analyze

only one case (2d histogram in analysis)

60 if n2-n1 >0

61 graphmode =3; % 3: more than one

case for various stocks (3d histogram)

62 if x2-x1+y2-y1+z2 -z1==0 graphmode =4; end % 4: analyze only

one case for various stocks (2d histogram in graph)

63 end

64

65 eta=Eta;

66 calc =0;

67 tic;

83

68

69 TS=TimeSeries;

70 TS=load_time_series(TS, filename , sheetname , n1,ns,n2 ,c,ms); %

load time series

71

72 if TS(n1).start <z1 && z1==z2

73 TS(n1).start=z1;

74 end

75

76

77 F=FundReturn (min([TS.start]), max([TS.stop]));

78

79 for n=n1:ns:n2

80 for z=z1:zs:z2

81 for y=y1:ys:y2

82 for x=x1:xs:x2

83 %% progress monitor

84 calc=calc +1; % count

cases

85 eta=calc_ETA(eta ,calc ,total_calculations) %

calculate and show progress and remaining time

86

87

88 %% analyze returns

89 G=strategy;

90 clear T; % clear

trades from potential previous runs

91 [G,T,F]= analyze_time_series(G, TS(n), F, x,y,z,n,nn,

rf); % analyze the time series with the strategy G

and create Trades T

92

93 %% analyze trades for a scenatio A

94 A(x,y,z,n)=TradeAnalyzer; % analyze

the generated Trades T and create an object A with

the analysis

95 A(x,y,z,n)=analyze_trades(A(x,y,z,n), T, G, TS(n),

graphmode , rf); % analyze

96 A(x,y,z,n) % show the

result

97 end

98 end

99 end

100 end

101

102

103 %% Generate output

84

104

105 if graphmode ==2 || graphmode ==4

106 lag=round ((TS(n).stop -TS(n).start)/10);

107 lag=1;

108 F=F.plotReturns (lag ,1);

109 end

110

111 O=TradeGraphs; % generate

the graphs and calculate the optimum in in object O

112 O=graph (O,A,G,x1,xs,x2,y1,ys,y2,z1 ,zs,z2 ,n1,ns,n2,graphmode ,G.

start);

113

114 if graphmode ==1

115 % calculate again trades for optimum and perform a wilcoxon

test on the

116 % best annaulized_return strategy

117 clear F;

118 F=FundReturn (min([TS.start]), max([TS.stop]));

119 G=strategy;

120 n=1;

121 G.start=(O.opt_z -1)+1; %

start analysis on day G.start

122 [G,T,F]= analyze_time_series(G, TS(n), F, O.opt_x ,O.opt_y ,O.

opt_z ,n,nn,rf);

123 disp ('Signrank test for avg performance per trade annaulized

is different to buy and hold return ');

124 [p,test]= signrank ([T.annualized_return],mean([A.

buy_hold_performance_pa]))

125 if test ==1 && (mean([T.annualized_return]) > mean([A.

buy_hold_performance_pa]))

126 disp ('!!!!!!!!!!!!!!!!!! POTENTIAL STRATEGY FOUND

!!!!!!!!!!!!!!!!!! ');

127 end

128 lag=round ((TS(n).stop -TS(n).start)/10);

129 lag=1;

130 F=F.plotReturns(lag ,1);

131 end

D.2.2 TimeSeries Class [Time_series.m]

1 classdef TimeSeries

2 %Loads the time series and performs some basic calculations

3 % Detailed explanation goes here

4

5 properties

85

6 filename

7 sheetname

8 prices

9 second

10 third

11 fourth

12 returns

13 returns_normalized

14 number_of_prices

15 number_of_returns

16 column

17 start

18 stop

19 vs

20 end

21

22 methods

23 function obj=load_time_series(obj ,filename ,sheetname ,n1,

ns,n2,c,ms)

24 % loads the time series and calls the calc_returns

method to

25 % calculate the returns

26

27 for n=n1:ns:n2

28 disp ('Loading time series ...');

29 n

30 obj(n).vs=0;

31 obj(n).filename=filename;

32 obj(n).sheetname=sheetname;

33

34 obj(n).column=n;

35 if ms==1 % more than one sheet

36 obj(n).sheetname =['sheet ' int2str(n)];

37 obj(n).column =1; % first column for prices

38 end;

39

40 filedata=xlsread(obj(n).filename ,obj(n).sheetname

);

41

42 obj(n).prices =(filedata (:,1));

% row with prices

43 obj(n).number_of_prices=size(obj(n).prices ,1);

% number of days of which we have returns (

number of rows)

44 obj(n).number_of_returns=size(obj(n).prices ,1) ;

% number of days of which we have returns (

86

number of rows)

45

46 if ms==1

47 obj(n).vs=1; % various sheets;

48 obj(n).second =(filedata(:,c)); % row with

SECOND TIME SERIES

49

50 obj(n).third=(filedata(:,c+1)); % row with

THIRD TIME SERIES

51 obj(n).fourth =(filedata(:,c+2)); % row with

FOURTH TIME SERIES

52 end;

53

54

55

56

57 obj(n)=calc_returns(obj(n));

% calculate returns for

the time series

58

59 end

60 end

61

62 function obj=calc_returns(obj)

63 % calculates logarithmic returns for the prices

64 obj.returns (1) =0;

65 obj.returns_normalized (1) =0;

66 obj.start =1;

67 obj.stop=obj.number_of_prices;

68

69

70 for x=2: obj.number_of_prices %nancheck

71 if obj.vs==1 % if multiple sheets check for first

value in second time series

72 if isnan (obj.second(x-1)) && ~isnan (obj.

second(x))

73 obj.start=x;

74 end

75 end

76

77 if ~isnan(obj.prices(x-1)) && isnan(obj.

prices(x)) % check for the first nan in

prices

78 obj.stop=x;

79 end

80 end

87

81

82

83 % calculate returns

84 disp ('Calculating returns ...');

85 for x=2: obj.number_of_prices % calculating returns

for the time series starting from day 2

86 obj.returns(x)=log(obj.prices(x)/obj.prices(x-1))

*100;

87 end

88

89 % calculate normalized returns

90 disp ('Calculating normalized returns ...');

91 m=mean(obj.returns);

92 s=sqrt(var(obj.returns));

93 for x=2: obj.number_of_prices

94 obj.returns_normalized(x)=(obj.returns(x)-m)/s;

95 end

96

97

98 obj.number_of_prices =obj.stop -obj.start;

99 obj.number_of_returns=obj.stop -obj.start -1;

100 end

101 end

102 end

D.2.3 Trade Generator Class [TradeGenerator.m]

1 classdef TradeGenerator % abstract class

2 % Trade generator is a super -class which loads the excel file

,

3 % calcualtes the returns

4

5 properties

6 trade_counter =0;

7 currently_open

8 action

9 start

10 stop

11 number_of_prices

12 number_of_returns

13

14 % properties that are used to communicate with the

subclass of

15 % trade_generator and that can be used as conditions to

generate

88

16 % trades:

17 open_day =0;

18 close_day =0;

19

20 open_price =0;

21 close_price =0;

22

23 today_price

24 today_day

25

26 close_price_override;

27

28 x

29 y

30 z

31 n

32 end

33

34 methods

35 function [obj ,t,F]= analyze_time_series (obj , ts, F, x, y

, z, n, nn, rf)

36 obj.start=ts.start;

37 obj.stop=ts.stop;

38 obj.number_of_prices=ts.number_of_prices;

39 obj.number_of_returns=ts.number_of_returns;

40 obj.currently_open(obj.start)=0;

41 obj.x=x;

42 obj.y=y;

43 obj.z=z;

44 obj.n=n;

45 obj.open_day =0;

46 obj.close_day =0;

47

48 t(1)=Trade; % generate a trade in case there is

none for the entire series

49

50 %% check each day of the returns time series

51 for day=obj.start:obj.stop

52

53 obj.today_price=ts.prices(day);

54 obj.today_day=day;

55

56 F=addIndexReturn(F,day ,ts.returns(day));

57

58 [open_condition_value , obj]=obj.

open_condition_calc (obj ,ts,nn);

89

59

60

61 if obj.currently_open(day)==1

62 [close_condition_value ,obj]=obj.

close_condition_calc (obj ,ts,nn);

63 if obj.close_price_override >0

64 F=addFundReturn(F,day ,log(obj.

close_price_override/ts.prices(

day -1))*100);

65 else

66 F=addFundReturn(F,day ,ts.returns(

day));

67 end

68 else

69 F=addFundReturn(F,day ,rf/365);

70 end

71

72 % open position

73 if obj.currently_open(day)~=1 &&

open_condition_value == 1 % open condition

74 obj.trade_counter=obj.trade_counter +1;

% count trades

75 obj.currently_open(day+1) =1;

% flag as

currently open trade

76 obj.action (day) = +1;

77 obj.open_day=day;

78 obj.open_price=ts.prices(day);

79

80 % generate trade object

81 t(obj.trade_counter) = Trade;

% generate a

new trade object

82 t(obj.trade_counter) = open (t(obj.

trade_counter), day , ts.prices(day)); %

buy

83

84

85 % close position

86 elseif obj.currently_open(day)==1 &&

close_condition_value == 1 % close

condition

87

88 if obj.close_price_override >0

89 price=obj.close_price_override;

90 obj.close_price_override =0;

90

91 else

92 price=ts.prices(day);

93 end

94

95 t(obj.trade_counter) = close (t(obj.

trade_counter), day , price); % sell

96 obj.currently_open(day+1) =0;

% next day

the trade will be closed

97 obj.action (day) = -1;

%

mark in the time series object action

98 obj.close_day=day;

99 obj.close_price=price;

100

101 else % do nothing

102 obj.currently_open(day+1)=obj.

currently_open(day); % keep

current position status

103 obj.action (day) = 0;

104 end

105 end

106 if obj.currently_open(day +1)==1 t(obj.trade_counter)=

close(t(obj.trade_counter),day , ts.prices(day));

obj.action (day) = -1; end % sell

107 end

108 end

109 end

D.2.4 Trade Analyzer Class [TradeAnalyzer.m]

1 classdef TradeAnalyzer

2 % The analyzes the trade objects

3 % Detailed explanation goes here

4

5 properties

6 x

7 y

8 z

9 n

10 outperformance_pa

11 outperformance_pa_leveraged

12 strategy_performance_pa

13 strategy_performance_pa_leveraged

14

91

15 buy_hold_performance_pa

16 strategy_performance

17 strategy_performance_leveraged

18

19 buy_hold_performance

20 strategy_performance_avg

21

22 strategy_number_of_trades

23 buy_hold_number_of_trades =1

24

25 strategy_longdays

26 buy_hold_longdays

27 idle_days

28 idle_performance

29 strategy_longdays_pct

30 buy_hold_longdays_pct =100;

31 strategy_avg_trade_duration =0;

32

33 strategy_winning_trades

34 strategy_winning_trades_pct

35 strategy_max_drawdown

36 strategy_max_win

37

38 worst_trade_start

39 worst_trade_end

40 worst_trade_number

41 best_trade_start

42 best_trade_end

43 best_trade_number

44 periods_pa =365;

45

46 strategy_performance_annualized_avg

47 strategy_performance_annualized_avg_filtered

48 strategy_performance_annualized_avg_filtered_test

49

50

51 end

52

53 methods

54 function obj=analyze_trades (obj , t, g, ts, graphmode , rf

)

55 if g.number_of_prices >0 % only calculate when there

are more than 1 valid prices in the time series

56

57 rf=rf/obj.periods_pa;

58

92

59 obj.idle_days=g.number_of_returns -sum([t.

trade_duration]);

60 obj.idle_performance=obj.idle_days*rf;

61

62 obj.strategy_performance=sum([t.log_return])+obj.

idle_performance;

63 obj.strategy_performance_leveraged=sum([t.

log_return_leveraged])+obj.idle_performance;

64

65 obj.buy_hold_performance=log(ts.prices(ts.stop)/

ts.prices(ts.start))*100;

66 obj.buy_hold_longdays=g.number_of_returns;

67 obj.strategy_performance_pa =(obj.

strategy_performance + obj.idle_performance) /

obj.buy_hold_longdays * obj.periods_pa;

68 obj.strategy_performance_pa_leveraged =(obj.

strategy_performance_leveraged + obj.

idle_performance)/ obj.buy_hold_longdays * obj

.periods_pa;

69 obj.buy_hold_performance_pa=obj.

buy_hold_performance / obj.buy_hold_longdays *

obj.periods_pa;

70 obj.outperformance_pa=obj.strategy_performance_pa

-obj.buy_hold_performance_pa;

71 obj.outperformance_pa_leveraged=obj.

strategy_performance_pa_leveraged -obj.

buy_hold_performance_pa;

72 obj.strategy_longdays=sum([t.trade_duration]);

73 obj.strategy_longdays_pct=obj.strategy_longdays/g

.number_of_prices *100;

74 obj.strategy_number_of_trades=g.trade_counter;

75 obj.strategy_winning_trades=sum([t.winning]);

76 obj.strategy_winning_trades_pct=obj.

strategy_winning_trades/obj.

strategy_number_of_trades *100;

77 obj.strategy_max_drawdown=min([t.log_return]);

78 obj.strategy_max_win=max([t.log_return]);

79

80 obj.strategy_performance_avg = mean([t

.log_return]);

81 obj.strategy_performance_annualized_avg = median

([t.annualized_return]);

82

83 if obj.strategy_number_of_trades > 1 && sum([t.

annualized_return]) >0 && sum([obj.

buy_hold_performance_pa]) >0 % avoid that after

93

removing nans there 's nothing left

84 obj.

strategy_performance_annualized_avg_filtered

= median ([t.annualized_return]);

85 obj.strategy_avg_trade_duration=obj.

strategy_longdays/obj.

strategy_number_of_trades;

86 [p,test]= signrank ([t.annualized_return],

nanmean ([obj.buy_hold_performance_pa]));

87 else

88 obj.

strategy_performance_annualized_avg_filtered

= 0;

89 test =0; % no test when no trades

90 end

91

92

93 if test == 1

94 obj.

strategy_performance_annualized_avg_filtered_test

= mean([t.annualized_return]);

95 else

96 obj.

strategy_performance_annualized_avg_filtered_test

= 0;

97 end

98

99

100 [val ,ind]=min([t.log_return]);

101 if ind >0 % only do the calculations if there was

at least one trade

102 obj.worst_trade_start=t(ind).buy_date;

103 obj.worst_trade_end=t(ind).sell_date;

104 obj.worst_trade_number=ind;

105 [val ,ind]=max([t.log_return]);

106 obj.best_trade_start=t(ind).buy_date;

107 obj.best_trade_end=t(ind).sell_date;

108 obj.best_trade_number=ind;

109 end

110

111 end % only calculate when there are more than 1 valid

prices in the time series

112

113 obj.x=g.x;

114 obj.y=g.y;

115 obj.z=g.z;

94

116 obj.n=g.n;

117

118

119 if graphmode ==2

120

121 disp ('

+++

');

122

123

124 figure (1);

125 hist([t.log_return]);

126 title('Trade Performance %')

127 xlabel('% performance per trade')

128 ylabel('Number of cases')

129

130 disp ('Signrank test for median different to 0

for trade performance %');

131 [p,test]= signrank ([t.log_return])

132

133

134 figure (2);

135 hist([t.annualized_return],50);

136 title('Annualized Trade Performance %')

137 xlabel('% performance p.a. per trade')

138 ylabel('Number of cases')

139

140 disp ('Signrank test for median different to 0

for annualized trade performance %');

141 [p,test]= signrank ([t.annualized_return])

142

143

144

145 figure (3);

146 hist([t.trade_duration]);

147 title('Trade duration ')

148 xlabel('Trade duration ')

149 ylabel('Number of cases')

150

151 end

152

153 end

154 end

155 end

95

D.2.5 Trade Graph generator Class [TradeGraphs.m]

1 classdef TradeGraphs

2 % Output of graphs for all the various trading parameters

3 % Detailed explanation goes here

4

5 properties

6 maxval

7 maxval2

8 maxval3

9

10 opt_x

11 opt_y

12 opt_z

13

14 opt2_x

15 opt2_y

16 opt2_z

17

18 opt3_x

19 opt3_y

20 opt3_z

21

22 end

23

24 methods (Static)

25 function [opt_x ,opt_y ,opt_z ,maxval] = optimize(a, matrix ,

description , x1,xs ,y1,ys,z1,zs) % find out optimum

strategy

26

27 [maxval , maxind] = max(matrix (:)); % calculate

maximum value and maximum index

28 [opt_x , opt_y , opt_z] = ind2sub(size(matrix),maxind);

% redistribute maxind on x y and z

29

30

31 opt_x=(opt_x -1) * xs + x1;

32 opt_y=(opt_y -1) * ys + y1;

33 opt_z=(opt_z -1) * zs + z1;

34

35 disp(' ');

36 disp('Best Strategy: ');

37 description

38 disp('============== ');

39

40 a(opt_x ,opt_y ,opt_z) % output optimal strategy

96

41 end

42 end

43

44 methods

45 function obj = graph (obj ,a,g,x1,xs,x2,y1,ys,y2,z1 ,zs,z2 ,

n1,ns,n2,graphmode ,start)

46

47 txtx=g.txtA;

48 txty=g.txtB;

49

50

51 if graphmode ==1

52 % various cases for an index

53

54 %INSERT CODE: ASK AUTHOR FOR MORE INFORMATION

55 %matrix2=reshape(cat(2,a(x1:xs:x2,y1:ys:y2 ,z1:zs:z2).

strategy_performance_annualized_avg) ,(x2-x1)/xs+1,(

y2-y1)/ys+1,(z2 -z1)/zs+1); % bundle objects

56 %[obj.opt2_x ,obj.opt2_y ,obj.opt2_z ,obj.maxval2] =

obj.optimize(a,matrix2 ,'Annualized per trade ',x1 ,xs

,y1,ys,z1 ,zs); % optimize for

strategy_performance_annualized_average

57

58 matrix3=reshape(cat(2,a(x1:xs:x2,y1:ys:y2 ,z1:zs:z2 ,1)

.strategy_performance_annualized_avg_filtered_test)

,(x2 -x1)/xs+1,(y2-y1)/ys+1,(z2-z1)/zs+1); % bundle

objects

59 [obj.opt3_x ,obj.opt3_y ,obj.opt3_z ,obj.maxval3] = obj

.optimize(a,matrix3 ,'Annualized per trade filtered

test',x1 ,xs,y1 ,ys,z1 ,zs); % optimize for

strategy_performance_annualized_average

60

61 [x,y] = meshgrid(y1:ys:y2,x1:xs:x2);

62

63 figure (1);

64 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

ys+1));

65 xlabel(txtx)

66 ylabel(txty)

67 zlabel('Performance % p.a.')

68 title ('Strategy Performance % p.a. vs. buy -and -hold'

)

69 hold on;

70 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

97

ys+1));

71 hold off;

72

73 figure (2);

74 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_number_of_trades),(x2 -x1)/xs+1,(y2-y1)

/ys+1));

75 xlabel(txtx)

76 ylabel(txty)

77 zlabel('Number of trades ')

78 title ('Number of trades ')

79

80 figure (3);

81 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_longdays_pct),(x2-x1)/xs+1,(y2-y1)/ys

+1));

82 xlabel(txtx)

83 ylabel(txty)

84 zlabel('% of days long position is taken')

85 title ('% of long days')

86 hold on;

87 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_longdays_pct),(x2-x1)/xs+1,(y2-y1)/ys

+1));

88 hold off;

89

90 figure (4);

91 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_winning_trades_pct),(x2-x1)/xs+1,(y2-

y1)/ys+1));

92 xlabel(txtx)

93 ylabel(txty)

94 zlabel('% of winning trades ')

95 title ('% of winning trades ')

96

97 figure (5);

98 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_max_drawdown),(x2-x1)/xs+1,(y2-y1)/ys

+1));

99 xlabel(txtx)

100 ylabel(txty)

101 zlabel('Worst individual trade % return ')

102 title('Worst individual trade %')

103

104 figure (6);

98

105 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_max_win),(x2-x1)/xs+1,(y2-y1)/ys+1));

106 xlabel(txtx)

107 ylabel(txty)

108 zlabel('Best individual trade % return ')

109 title('Best individual trade %')

110

111 figure (7);

112 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_performance_avg),(x2 -x1)/xs+1,(y2-y1)/

ys+1));

113 xlabel(txtx)

114 ylabel(txty)

115 zlabel('Average % return per trade ')

116 title ('Average Performance per trade ')

117

118 figure (8);

119 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_performance_annualized_avg),(x2 -x1)/xs

+1,(y2-y1)/ys+1));

120 xlabel(txtx)

121 ylabel(txty)

122 zlabel('Average % return per trade annualized ')

123 title ('Average Performance per trade annualized ')

124 hold on;

125 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

ys+1));

126 hold off;

127

128 figure (9);

129 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_performance_annualized_avg_filtered) ,(

x2-x1)/xs+1,(y2 -y1)/ys+1));

130 xlabel(txtx)

131 ylabel(txty)

132 zlabel('Average % return per trade annualized ')

133 title ('Average % return per trade annualized

filtered with trade amounts ')

134 hold on;

135 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

ys+1));

136 hold off;

137

138 figure (10);

99

139 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).

strategy_performance_annualized_avg_filtered_test)

,(x2 -x1)/xs+1,(y2-y1)/ys+1));

140 xlabel(txtx)

141 ylabel(txty)

142 zlabel('Average % return per trade annualized ')

143 title ('Average Performance per trade annualized

filtered with wilcoxon test')

144 hold on;

145 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

ys+1));

146 hold off;

147

148 figure (11);

149 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_performance_pa_leveraged) ,(x2-x1)/xs

+1,(y2-y1)/ys+1));

150 xlabel(txtx)

151 ylabel(txty)

152 zlabel('Performance % p.a. leveraged ')

153 title ('Strategy Performance % p.a. leveraged vs. buy

-and -hold')

154 hold on;

155 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).buy_hold_performance_pa) ,(x2-x1)/xs+1,(y2 -y1)/

ys+1));

156 hold off;

157

158

159 figure (12);

160 mesh (x,y,reshape(cat(2,a(x1:xs:x2 ,y1:ys:y2,obj.opt_z

,1).strategy_avg_trade_duration),(x2-x1)/xs+1,(y2-

y1)/ys+1));

161 xlabel(txtx)

162 ylabel(txty)

163 zlabel('Days')

164 title ('Average trade duration ')

165 end

166

167 % --

168 if graphmode ==3

169 % 3D histogram

170

171 end

100

172 % --

173

174 if graphmode ==4

175 % special case for various stocks

176

177 figure (1);

178 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_pa],30);

179 title('Strategy Performance p.a. %')

180 xlabel('% p.a.')

181 ylabel('Number of cases')

182

183 figure (2);

184 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_number_of_trades],20);

185 title('Number of trades ')

186 xlabel('Number of trades ')

187 ylabel('Number of cases')

188

189 figure (3);

190 hist([a(x1,y1 ,z1,n1:ns:n2).strategy_longdays_pct

],20);

191 title('Longdays %')

192 xlabel('Longdays %')

193 ylabel('Number of cases')

194

195 figure (4);

196 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_winning_trades_pct],20);

197 title ('% of winning trades ')

198 xlabel('% of winning trades ')

199 ylabel('Number of cases')

200

201 figure (5);

202 hist([a(x1,y1 ,z1,n1:ns:n2).strategy_max_drawdown

],20);

203 title ('Worst individual trade % return ')

204 xlabel('% of winning trades ')

205 ylabel('Number of cases')

206

207 figure (6);

208 hist([a(x1,y1 ,z1,n1:ns:n2).strategy_max_win],20);

209 title ('Best individual trade %')

210 ylabel('Number of cases')

211 xlabel('Best individual trade % return ')

212

101

213 figure (7);

214 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_avg],20);

215 title ('Average Performance per trade ')

216 ylabel('Number of cases')

217 xlabel('Average % return per trade ')

218

219 figure (8);

220 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_annualized_avg],20);

221 title ('Average % return per trade annualized ')

222 ylabel('Number of cases')

223 xlabel('Average % return per trade annualized ')

224

225 figure (9);

226 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_annualized_avg_filtered

],20);

227 title ('Average % return per trade annualized

filtered with trade amounts ')

228 ylabel('Number of cases')

229 xlabel('Average % return per trade annualized ')

230

231 figure (10);

232 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_annualized_avg_filtered_test

],20);

233 title ('Average Performance per trade annualized

filtered with wilcoxon test')

234 ylabel('Number of cases')

235 xlabel('Average % return per trade annualized ')

236

237 figure (11);

238 hist([a(x1,y1 ,z1,n1:ns:n2).outperformance_pa],20)

;

239 title('Strategy Outperformance %')

240 xlabel('Outperformance % p.a.')

241 ylabel('Number of cases')

242

243 figure (12);

244 hist([a(x1,y1 ,z1,n1:ns:n2).

outperformance_pa_leveraged],20);

245 title('Strategy Outperformance % with leverage ')

246 xlabel('Outperformance % p.a. (with leverage)')

247 ylabel('Number of cases')

248

102

249 figure (13);

250 subplot (2,1,1);

251 hist([a(x1,y1 ,z1,n1:ns:n2).

buy_hold_performance_pa],30);

252 title('Buy -hold -Performance p.a. %')

253 xlabel('% p.a.')

254 ylabel('Number of cases')

255

256 subplot (2,1,2);

257 hist([a(x1,y1 ,z1,n1:ns:n2).

strategy_performance_pa],30);

258 title('Strategy Performance p.a. %')

259 xlabel('% p.a.')

260 ylabel('Number of cases')

261

262

263 strategy_median=median ([a(x1 ,y1,z1,n1:ns:n2).

strategy_performance_pa])

264 %strategy_leveraged_mean=mean([a(x1,y1,z1 ,n1:ns:

n2).strategy_performance_pa_leveraged])

265 buy_hold_median=median ([a(x1 ,y1,z1,n1:ns:n2).

buy_hold_performance_pa])

266 outperformance_median=median ([a(x1,y1,z1,n1:ns:n2

).outperformance_pa])

267 %outperformance_leveraged_mean=mean([a(x1 ,y1,z1 ,

n1:ns:n2).outperformance_pa_leveraged])

268 [p,test]= signrank ([a(x1,y1 ,z1,n1:ns:n2).

outperformance_pa])

269

270 %[a(x1,y1 ,z1,n1:ns:n2).strategy_performance_pa]

271 %[a(x1,y1 ,z1,n1:ns:n2).buy_hold_performance_pa]

272 end

273 end

274 end

275 end

D.2.6 Trade Class [Trade.m]

1 classdef Trade

2 % Trade objects contain a buying and selling date and price

3 % Each trade object can be bought and sold only once (open

and close)

4

5 properties

6 buy_date =0;

103

7 sell_date =0;

8 buy_price =0;

9 sell_price =0;

10 log_return =0;

11 log_return_leveraged =0;

12 annualized_return =0;

13 trade_duration =0;

14 winning =0;

15 currently_open =0;

16 leverage =2;

17 end

18

19 methods

20 function obj=calc_return(obj)

21 obj.log_return=log(obj.sell_price / obj.buy_price) *

100;

22 obj.log_return_leveraged=obj.log_return*obj.leverage;

23 obj.annualized_return=obj.log_return / max((obj.

sell_date -obj.buy_date) ,1) * 365;

24 obj.trade_duration=obj.sell_date - obj.buy_date;

25 if obj.buy_price <obj.sell_price obj.winning =1; else

obj.winning =0; end

26 end

27

28 function [obj ,ts_obj] = open (obj ,date ,price , ts_obj) %

opens a trade

29 obj.buy_date=date;

30 obj.buy_price=price;

31 obj.currently_open=true;

32 ts_obj.action (date) = +1;

33 end

34

35 function [obj ,ts_obj] = close (obj , date , price , ts_obj)

% closes a trade

36 obj.sell_date=date;

37 obj.sell_price=price;

38 obj=calc_return(obj);

39 obj.currently_open=false;

40 ts_obj.action (date) = -1;

41 end

42 end

43 end

D.2.7 Fund Class [FundReturn.m]

104

1 classdef FundReturn

2 %Simulates the returns of the index and the fund with the

strategy on a

3 %daily basis

4

5 properties

6 indexLog

7 fundLog

8 start

9 stop

10 indexAmount

11 fundAmount

12 indexChange

13 fundChange

14 index

15 fund

16 end

17

18 methods

19 function obj=FundReturn (start ,stop)

20 obj.indexAmount(start:stop)=0;

21 obj.fundAmount (start:stop)=0;

22 obj.indexChange (start:stop)=0;

23 obj.fundChange (start:stop)=0;

24 obj.start=start;

25 obj.stop=stop;

26 end

27

28 function obj=addFundReturn(obj ,day ,change)

29 if isnan(change)

30 change =0;

31 end

32 obj.fundChange(day)=obj.fundChange(day)+change;

33 obj.fundAmount(day)=obj.fundAmount(day)+1;

34 end

35

36 function obj=addIndexReturn(obj ,day ,change)

37 if isnan(change)

38 change =0;

39 end

40 obj.indexChange(day)=obj.indexChange(day)+change;

41 obj.indexAmount(day)=obj.indexAmount(day)+1;

42 end

43

44 function obj=plotReturns(obj ,lag ,mode)

105

45 clear obj.indexLog;

46 clear obj.fundLog;

47

48 obj.indexLog(obj.start:obj.stop)=0;

49 obj.fundLog(obj.start:obj.stop)=0;

50 obj.index(obj.start:obj.stop)=0;

51 obj.fund(obj.start:obj.stop)=0;

52

53 for x=obj.start+lag : obj.stop

54 if obj.indexAmount(x)>0

55 obj.indexChange(x)=obj.indexChange(x)/obj.

indexAmount(x);

56 obj.indexLog(x)=obj.indexLog(x-1)+ obj.

indexChange(x);

57 else

58 obj.indexLog(x)=obj.indexLog(x-1);

59 end

60

61 if obj.fundAmount(x)>0

62 obj.fundChange (x)=obj.fundChange (x)/obj.

fundAmount (x);

63 obj.fundLog(x) =obj.fundLog (x-1)+ obj.

fundChange (x);

64 else

65 obj.fundLog(x) =obj.fundLog (x-1);

66 end

67 %obj.index(x)=(exp(obj.indexLog(x)*0.01) -1)*100;

68 %obj.fund(x)=(exp(obj.fundLog(x)*0.01) -1)*100;

69 end

70

71

72

73 figure (19);

74 plot(obj.start:obj.stop -1,obj.fundAmount(obj.start:

obj.stop -1),'-r');

75 hold on

76 plot(obj.start:obj.stop -1,obj.indexAmount(obj.start:

obj.stop -1),'-k');

77 hold off

78 xlabel('Days')

79 ylabel('# of investments ')

80 title ('Amount of investments in index (black) vs.

Fund Return (red)')

81

82 figure (20);

106

83 plot(obj.start+lag:obj.stop -1, obj.fundLog (obj.start

+lag:obj.stop -1),'-r');

84 hold on

85 plot(obj.start+lag:obj.stop -1, obj.indexLog(obj.start

+lag:obj.stop -1),'-k');

86

87 if mode ==1

88 hold off

89 end

90

91 xlabel('Days')

92 ylabel('Return (log)')

93 title ('Index Return (black) vs. Fund Return (red)')

94

95 %figure (21);

96 %semilogy (1: obj.stop ,obj.fund ,'-r');

97 %hold on

98 %semilogy (1: obj.stop ,obj.index ,'-k');

99 %hold off

100 %xlabel('Days ')

101 %ylabel('Return ')

102 %title ('Index Return (black) vs. Fund Return (red) ')

103

104 sharpe_fund=sharpe(obj.fundLog ,0.04)

105 sharpe_index=sharpe(obj.indexLog ,0.04)

106

107 disp ('Calculating peak to trough ...');

108

109 if mode ==1

110 for x=obj.start+lag:obj.stop

111 minTempFund=min(obj.fundLog(x:obj.stop));

112 ptFund(x)=minTempFund -obj.fundLog(x);

113 minTempIndex=min(obj.indexLog(x:obj.stop));

114 ptIndex(x)=minTempIndex -obj.indexLog(x);

115 end

116 peakToTroughLogFund=min(ptFund)

117 %peakToTroughFund =(exp(peakToTroughLogFund /100) -1)

*100

118

119 peakToTroughLogIndex=min(ptIndex)

120 %peakToTroughIndex =(exp(peakToTroughLogIndex /100)

-1)*100

121

122 disp ('Are time series statistically significantly

different?');

107

123 [p,test]= signrank ([obj.indexChange],[obj.

fundChange])

124 end

125 end

126 end

127 end

D.2.8 Strategy Class [STRATEGY_NeuralNetwork1.m]

1 classdef STRATEGY_neuralNetwork1 < TradeGenerator

2 % buy and sell depending on neural network output

3

4 properties

5 txtA = ['Buy threshold: y > theta_b '];

6 txtB = ['Sell threshold: y < theta_s '];

7

8

9

10

11 end

12

13 methods (Static)

14 function [value ,g]= open_condition_calc (g,ts,nn)

15 % buying condition

16 %

===

17 % buy if we 're above the closing price

18

19 for d=1:g.z

20 x(d)=ts.returns_normalized(g.today_day -d);

21 end

22 outputNeuron=neuronCalc (6,11,4,x,nn); % tanh

23 %outputNeuron

24 if (outputNeuron > (g.y/1000))

25

26 %

===

27

28 value=true;

29 else value=false;

30 end

31 end

32

108

33

34 function [value ,g]= close_condition_calc (g,ts,nn)

35 % selling condition

36 %

===

37 % sell when x% below high since high since we

bought

38

39 for d=1:g.z

40 x(d)=ts.returns_normalized(g.today_day -d);

41 end

42 outputNeuron=neuronCalc (6,11,4,x,nn); % tanh

43 if (outputNeuron < (-g.x/1000))

44 %

===

45

46 %if g.today_price <g.open_price

47 % g.close_price_override=g.open_price;

48 %else

49 % g.close_price_override =0;

50 %end

51

52 value=true;

53 else value=false;

54 end

55 end

56 end

57 end

D.2.9 Strategy Class [STRATEGY_NeuralNetwork2.m]

1 classdef STRATEGY_neuralNetwork2 < TradeGenerator

2 % buy and sell depending on neural network output

3 % Strategy for Neural Network Toolbox

4

5 properties

6 txtA = ['Buy threshold: y > theta_b '];

7 txtB = ['Sell threshold: y < theta_s '];

8

9

10

11

12 end

109

13

14 methods (Static)

15 function [value ,g]= open_condition_calc (g,ts,nn)

16 % buying condition

17 %

===

18 % buy if we 're above the closing price

19

20 for d=1:g.z

21 p(d)=ts.returns_normalized(g.today_day -d

+1);

22 end

23 outputNeuron=sim(nn ,p');

24 if (outputNeuron > (g.y/1000))

25

26 %

===

27

28 value=true;

29 else value=false;

30 end

31 end

32

33

34 function [value ,g]= close_condition_calc (g,ts,nn)

35 % selling condition

36 %

===

37 % sell when x% below high since high since we

bought

38

39 for d=1:g.z

40 p(d)=ts.returns_normalized(g.today_day -d

+1);

41 end

42 outputNeuron=sim(nn ,p');

43 if (outputNeuron < (-g.x/100))

44 %

===

45

46 %if g.today_price <g.open_price

47 % g.close_price_override=g.open_price;

110

48 %else

49 % g.close_price_override =0;

50 %end

51

52 value=true;

53 else value=false;

54 end

55 end

56 end

57 end

D.2.10 Strategy Class [STRATEGY_NeuralNetwork3.m]

1 classdef STRATEGY_neuralNetwork3 < TradeGenerator

2 % Only if the stock market has reached the level of a y day

low and

3 % and then set a stoploss

4

5 properties

6 txtA = ['Buy after increase in Payout ratio'];

7 txtB = ['Sell after decrease in Payout ratio'];

8

9 % txtx = ['Buy when y% increase since ',num2str(opt_n),

10 % '-day -low '];

11 end

12

13 methods (Static)

14 function [value ,g]= open_condition_calc (g,ts,nn)

15 % buying condition

16 %

===

17 % buy if payoutratio increases

18 outputNeuron (1)=0;

19 outputNeuron (2)=0;

20 for a=1:2

21 i=g.today_day+1-a;

22 if ~isnan (sum(ts.returns_normalized(i:i-1)))

&& ~isnan (sum(ts.second(i-a:i))) && ~isnan

(sum(ts.third(i-a:i))) && ~isnan (sum(ts.

prices(i-a:i)))

23 % p=inputs

24

25 p(1)=ts.second(i)/ts.second(i-a) -1;

26 p(2)=ts.third(i)/ts.second(i-a) -1;

111

27 p(3)=ts.fourth(i)/ts.second(i-a) -1;

28 outputNeuron(a)=sim(nn,p');

29 end

30 end

31 if outputNeuron (1) >0;%outputNeuron (2)

32 %

===

33

34 value=true;

35 else value=false;

36 end

37 end

38

39

40 function [value ,g]= close_condition_calc (g,ts,nn)

41 % selling condition

42 %

===

43 % sell if payoutratio decreases

44 outputNeuron (1)=0;

45 outputNeuron (2)=0;

46 for a=1:2

47 i=g.today_day+1-a;

48 if ~isnan (sum(ts.returns_normalized(i:i-1)))

&& ~isnan (sum(ts.second(i-a:i))) && ~isnan

(sum(ts.third(i-a:i))) && ~isnan (sum(ts.

prices(i-a:i)))

49 % p=inputs

50

51 p(1)=ts.second(i)/ts.second(i-a) -1;

52 p(2)=ts.third(i)/ts.second(i-a) -1;

53 p(3)=ts.fourth(i)/ts.second(i-a) -1;

54 outputNeuron(a)=sim(nn,p');

55 end

56 end

57 if outputNeuron (1) <-.5;%outputNeuron (2)

58

59 %

===

60

61 %if g.today_price >g.open_price

62 % g.close_price_override=exp(g.x*0.01)*g.

open_price;

112

63 %else

64 g.close_price_override =0;

65 %end

66

67 value=true;

68 else value=false;

69 end

70 end

71 end

72 end

113

E Figures, Tables and Bibliography

List of Figures

2.1 Procedure of simulation . 13

3.1 Neural network structure with multiple layers as described in

Mark Hudson Beale [2010] . 17

3.2 Activation functions . 18

3.3 Threshold functions . 19

3.4 Time series handling . 20

3.5 Absolute values vs. relative returns 21

4.1 Gradients of a vector �eld . 24

4.2 Moving on the error surface: method comparison 27

5.1 UML diagram of Neural Network training 37

5.2 UML diagram of trading simulator 38

A.1 Gradient Descent (Trained network for DJ Industrial's returns

1990-2000) . 46

A.2 Scaled conjugate gradient (Trained network for DJ Industrials

returns 1990-2000) . 46

A.3 BFGS quasi Newton (Trained network for DJ Industrials returns

1990-2000) . 47

A.4 Levenberg-Marquardt (Trained network for DJ Industrials re-

turns 1990-2000) . 47

A.5 Bayesian Regularization (Trained network for DJ Industrials re-

turns 1990-2000) . 48

A.6 Resilient Backpropagation (Trained network for DJ Industrials

returns 1990-2000) . 48

A.7 Conjugate Gradient with Powell/Beale Restarts (Trained net-

work for DJ Industrials returns 1990-2000) 49

A.8 Fletcher-Powell Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 49

A.9 Polak-Ribiére Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 50

A.10 One Step Secant (Trained network for DJ Industrials returns

1990-2000) . 50

A.11 Variable Learning Rate Gradient Descent (Trained network for

DJ Industrials returns 1990-2000) 51

114

A.12 Gradient Descent with Momentum (Trained network for DJ In-

dustrials returns 1990-2000) . 51

A.13 Gradient Descent (Trained network for DJ Industrials returns

1990-2000) . 52

A.14 Trained network for DJ Industrials returns 1990-2000, log re-

turns, comparison between two methods 52

A.15 Simulated results of 3-day return forecast with neural network . . 53

A.16 Simulated results of 3-day return forecast with neural network -

out of sample application . 54

B.1 Gradient Descent (Trained network for DJ Industrials returns

1990-2000) . 55

B.2 Scaled conjugate gradient (Trained network for DJ Industrials

returns 1990-2000) . 55

B.3 BFGS quasi Newton (Trained network for DJ Industrials returns

1990-2000) . 56

B.4 Levenberg-Marquardt (Trained network for DJ Industrials re-

turns 1990-2000) . 56

B.5 Bayesian Regularization (Trained network for DJ Industrials re-

turns 1990-2000) . 57

B.6 Resilient Backpropagation (Trained network for DJ Industrials

returns 1990-2000) . 57

B.7 Conjugate Gradient with Powell/Beale Restarts (Trained net-

work for DJ Industrials returns 1990-2000) 58

B.8 Fletcher-Powell Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 58

B.9 Polak-Ribiére Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 59

B.10 One Step Secant (Trained network for DJ Industrials returns

1990-2000) . 59

B.11 Variable Learning Rate Gradient Descent (Trained network for

DJ Industrials returns 1990-2000) 60

B.12 Gradient Descent with Momentum (Trained network for DJ In-

dustrials returns 1990-2000) . 60

B.13 Trained network for DJ Industrials returns 1990-2000, log re-

turns, comparison between two methods 61

B.14 Simulated results of 1-day return forecast with neural network . . 62

115

C.1 Gradient Descent (Trained network for DJ Industrials returns

1990-2000) . 63

C.2 Scaled conjugate gradient (Trained network for DJ Industrials

returns 1990-2000) . 63

C.3 BFGS quasi Newton (Trained network for DJ Industrials returns

1990-2000) . 64

C.4 Levenberg-Marquardt (Trained network for DJ Industrials re-

turns 1990-2000) . 64

C.5 Bayesian Regularization (Trained network for DJ Industrials re-

turns 1990-2000) . 65

C.6 Resilient Backpropagation (Trained network for DJ Industrials

returns 1990-2000) . 65

C.7 Conjugate Gradient with Powell/Beale Restarts (Trained net-

work for DJ Industrials returns 1990-2000) 66

C.8 Fletcher-Powell Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 66

C.9 Polak-Ribiére Conjugate Gradient (Trained network for DJ In-

dustrials returns 1990-2000) . 67

C.10 One Step Secant (Trained network for DJ Industrials returns

1990-2000) . 67

C.11 Variable Learning Rate Gradient Descent (Trained network for

DJ Industrials returns 1990-2000) 68

C.12 Gradient Descent with Momentum (Trained network for DJ In-

dustrials returns 1990-2000) . 68

C.13 Strategy results with �nancial factors as input neurons 69

List of Tables

1 Training algorithms used for testing 23

2 Strategy 1 Summary . 40

3 Strategy 1 Summary (out of sample) 41

4 Strategy 2 Summary . 42

5 Strategy 3 Summary . 43

116

References

A direct adaptive method for faster backpropagation learning: The rprop algo-

rithm.

Fathi Abid and Mona Ben Salah. Estimating Term Structure of Interest Rates:

Neural Network Vs one Factor Parametric Models. SSRN eLibrary, 2002. doi:

10.2139/ssrn.313561.

Oleg Alexandrov. Conjugate gradient. Internet, 2010. URL

http://en.wikipedia.org/wiki/File:Conjugate_gradient_illustration.svg.

Sanjoy Basu. Investment performance of common stocks in relation to their

price-earnings ratios: A test of the e�cient markets hypothesis. Journal of

Finance, pages 663�682, 1977.

Frank Burden and Dave Winkler. Bayesian regularization of neural networks.

In David J. Lvingstone, editor, Arti�cial Neural Networks, volume 458 of

Methods in Molecular Biology, pages 23�42. Humana Press, 2009. ISBN 978-

1-60327-101-1.

Andrew P. Carverhill and Terry H. Cheuk. Alternative Neural Network

Approach for Option Pricing and Hedging. SSRN eLibrary, 2003. doi:

10.2139/ssrn.480562.

Shie-Yui Liong Chi Dung Doan. Generalization for multilayer neural network

bayesian regularization or early stopping. Department of Civil Engineering,

National University of Singapore, Singapore, 2009.

Stanislaw H. Zak Edwain K.P. Chong. An Introduction to Optimization. John

Wiley & Sons, 2008.

William J. Egan. The Distribution of S&P 500 Index Returns. SSRN eLibrary,

2007.

Javier Estrada. Black swans, market timing and the dow. Applied Economics

Letters, page 1117, 2009.

French K Fama E. The cross-section of expected stock returns. Journal of

Finance, 47:427�465, 1992.

117

A Direct Adaptive Method for Faster Backpropagation Learning: The

RPROP Algorithm. Martin riedmiller,heinrich braun. University of Karl-

sruhe.

Simon Haykin. Neural Networks and Learning Machines. Pearson, 2009.

Jorge Nocedal Jean Charles Gilberg. Global convergence properties of conjugate

gradient methods for optimization. Rapports de Recherche, 1268, 1990.

Ojoung Kwon, K.C. Tseng, Jill Bradley, and Luna C. Tjung. Forecasting Fi-

nancial Stocks Using Data Mining. SSRN eLibrary, 2010.

Richard Lowry. The wilcoxon signed-rank test. Wikipedia, 2010. URL

http://faculty.vassar.edu/lowry/ch12a.html.

Burton Malikel. A Random Walk Down Wall Street. W. W. Norton & Company,

Inc., 1973.

Howard B. Demuth Mark Hudson Beale, Martin T. Hagan. Neural network

toolbox 7 - user's guide, 2010.

Womack K. Michaely R, Thaler RH. Price reactions to dividend initiatives and

omissions: Overreaction or drift? Cornell University, Working Paper, 1993.

Martin F. Møller. A scaled conjugate gradient algorithm for fast supervised

learning. Computer Science Department University of Aarhus Denmark, 1990.

Dreman David N. and Berry Michael A. Overreaction, underreaction, and the

low-p/e e�ect. Financial Analysts Journal, 51 (4):21, 1992.

Francis Nicholson. Price-earnings ratios in relation to investment results. Fi-

nancial Analysts Journal, pages 105�109, Jan/Feb 1968.

Faizul F. Noor and Mohammad F. Hossain. A Quantitative Neural Network

Model (QNNM) for Stock Trading Decisions. Jahangirnagar Review, Part II:

Social Science, Vol. XXIX, pp. 177-194, 2005.

Kevin L. Priddy. Arti�cial neural networks, an introduction. pages 16�17, 2005.

Ball R. Anomalies in relationships between securities' yields and yield-

surrogates. 6:103�126, 1978.

Ananth Ranganathan. The Levenberg-Marquardt Algorithm. 2004.

118

Prantik Ray and Vani Vina. Neural Network Models for Forecasting Mutual

Fund Net Asset Value. SSRN eLibrary, 2004.

Martin Riedmiller. Rprop - description and implementation details. University

of Karlsruhe, 1994.

B.d. Riplay. Pattern recognition and neural networks. Cambridge University

Press, 1996.

Raul Rojas. Neural Networks, A Systematic Introduction. Springer, 1996.

Lanstein R Rosenberg B, Reid K. Persuasive evidence of market ine�ciency.

Journal of Portfolio Management, 13:9�17, 1985.

Ronald Schoenberg. Optimization with the quasi-newton method. 2001.

Udo Sei�ert. Training of large-scale feed-forward neural networks. International

Joint Conference on Neural Networks, 2006.

Nassim N. Taleb. The Black Swan: The Impact of the Highly Improbable. Ran-

dom House, April 2007. ISBN 1400063515.

Leonard J. Tashman. Out-of-sample tests of forecast-

ing accuracy: an analysis and review, 2001. URL

http://www.forecastingeducation.com/archive/2000/ijfoct-outofsampletests.htm.

Wikipedia, 2010. URL http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test.

Y. Yuan Y. H. Dai. A three parameter family of nonlinear conjugate gradient

methods. ICM-98-050, September 1998.

119

